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Abstract. Classification performance in BCIs depends heavily on the
features that are used as input to the employed classifier. If the BCI signal
is extended in time, we may either use a representation of the signal at
multiple time segments with a high risk of overfitting or averaged over time
with a high risk of underfitting as input to the classifier. In this paper we
present an empirical study which allows us to determine the right balance
between these two representations. Using two BCI data sets, we show that
our method can significantly improve classification performance.

1 Introduction

Brain computer interfacing (BCI) is a general term that is used when we have
a direct connection between the brain and a computer [1]. In other words,
the subject is given a task and the computer predicts task conditions based
on measurements of brain activity recorded by various instruments. In these
setups, we have to deal with a huge data set consisting of a multitude of noisy
signals. A typical representation of such signals in (EEG-based) BCIs is the
power spectrum, computed for multiple time segments and over multiple sensors.

The question we wish to address in this paper is how to make optimal use
of the information contained within the power spectra as the signal evolves
over time. From signal processing, it is known that if the measured signal is
stationary then averaging over multiple time segments results in higher signal to
noise ratio. This averaging method can also be applied in the frequency domain,
in which case it is known as Bartlett’s method [2]. This will reduce the variance
of the periodogram at the price of reducing the time resolution. Averaging
is the dominant approach in BCI data analysis (see e.g., [3]). Note that if the
assumption of stationarity is violated, averaging may not be optimal and we may
wish to use other approaches. Especially in BCI, the stationarity assumption
is troublesome since brain activity may be highly non-stationary within a given
trial. In that case, it could be wise to use the power spectra at individual time
segments as input to a classifier. However, this leads to a much larger number
of parameters in the classification with a high risk of overfitting.

The question then becomes which of both representations performs better
in the context of BCI. To this end, we vary smoothly between using the seg-
ments as independent features on one hand and by averaging over the segments
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on the other hand. This can be achieved by means of regularization of differ-
ences, which was used as a regularizer for logistic regression. The regularized
logistic regression model was used for the classification of BCI data obtained for
two distinct BCI paradigms. The first dataset consists of EEG data collected
for subjects engaging in an imagined movement paradigm, which currently is
one of the most often used BCI paradigms [4]. The second dataset consists of
MEG data collected for subjects engaging in a relatively new covert attention
paradigm [5]. We show that one can gradually move in the direction of concate-
nation, without loosing performance or, in some cases, obtaining even better
classification performance.

The structure of the paper is as follows. In Section 2 we motivate and define
the regularizer and describe how it is applied to logistic regression. In Section 3
the employed datasets are described in more detail. Experimental results for the
BCI datasets are shown in Section 4. Conclusions follow in Section 5.

2 Methods

A signal is called stationary when the joint probability distribution of the signal
does not vary over time. In other words, having a stationary signal and dividing
it into segments, the mean and variance of each segment are the same as those of
the whole signal. For stationary signals, it has been shown that averaging over
segments results in higher signal to noise ratio [2]. Hence, our strategy would be
to concatenate time segments to obtain one big feature vector when the signal is
non-stationary and to average over the segments when the signal is stationary.
We refer to both approaches as concatenation and averaging respectively.

In real life, most of the time we do not have exact knowledge about the signal.
For instance, using a particular BCI paradigm, we do not know exactly what
goes on in the brain of the subject. Is he or she using the same strategy over
time? Is the brain responding exactly the same over time? Typically, it is un-
known whether averaging, concatenation, or some weighted combination of both
would result in the highest signal to noise ratio. To overcome this dilemma, we
introduce a regularizer which allows us to vary smoothly between concatenation
and averaging. This regularizer, called regularization of differences, is used in
this paper as a penalization term for logistic regression. Logistic regression has
been used before in BCI [7, 8] and solves a classification problem by expressing
the probability of class membership as:

p(c | x, θ) ∝ exp(θT
c x)

where x = (x1, ..., xM ) is the set of features (including a bias term) and θc is
the parameter vector associated with class c ∈ {1, . . . , C}. A logistic regression
model is trained by minimizing the following loss function:

L(θ) =
N∑

n=1

(
log(

C∑
c=1

exp(θT
c xn)) − θT

cn
xn

)
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which is written as a function of θ because data D = {(xn, cn)}N
n=1 is assumed

to be constant during training.
Often, the minimization is constrained by adding a regularizer R(θ); a well

known example is Tikhonov regularization [9]. We define regularization of differ-
ences as a measure of differences between weights of features of different segments
of the signal. Assume that we divide the signal into S segments, such that θs

c

corresponds to parameter vector associated with class c and time segment s.
Then, the regularizer can be written in the following form:

R(θ) =
C∑

c=1

S∑
s=1

S∑
t=1

||θs
c − θt

c||2

where || · || is the Euclidean norm. Note that we could also use other distances
instead of Euclidean, such as in Lasso [10] or Elastic Net [11] regularizers. How-
ever as the focus of the regularizer is to force the weights of different segments
to be the same, there would be no major difference in the result when using
different norms. The regularizer can easily be used with any classifier whose
loss function is convex, guaranteeing a unique solution. In this paper, we use
the regularizer in conjunction with logistic regression. The goal of training the
classifier would be to minimize the objective function:

F (θ) = L(θ) + λR(θ)

with regularization parameter λ. Large values of λ force parameters belonging to
different segments to be the same, resembling averaging. Conversely, low values
of λ results in treating each segment independently, resembling concatenation.
The method is made available through the FieldTrip classification module1.

3 BCI datasets

In this section, we describe the two paradigms which were used in the analysis.

3.1 Imagined movement

We conducted an experiment with ten subjects based on an imagined movement
paradigm described in [6]. In this paper we restrict ourselves to the best five
subjects according to previous results. We used multichannel EEG data recorded
from 28 Ag/AgCl electrodes placed on the scalp according to the international
10-20 system using a left mastoid reference. The sampling frequency was 128
Hz. There were three tasks: right-hand imagined movement, left-hand imagined
movement, and no imagined movement. Each subject performed around 60 trials
for each task, each of which took 6 seconds (2 seconds before and 4 seconds
after cue onset). For some of the subjects the data is quite unbalanced which
will be taken into account in the analysis. Based on prior research [6, 4], we
know that task-related activity takes place in the alpha band over the motor

1http://www.ru.nl/fcdonders/fieldtrip/modules

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



cortex. Therefore we filtered the data and used the power spectrum computed
for 1 Hz frequency bands between 8 Hz and 14 Hz for EEG channels C3, C4
and Cz. In order to prevent the influence of evoked response, we restricted
ourselves to the 1–4 second interval after cue onset. The last thing to consider
is how to choose the number of time segments and how to compute the power
spectrum for segment. We used fixed-length time windows and chose to divide
the three second interval into 23 segments, each of which has 50% overlap with
its neighbors. To compensate for the effect of outliers we normalized the data
to have zero mean and a standard deviation of one.

3.2 Covert attention

In the covert attention experiment, fifteen subjects had to covertly attend for
2500 ms to different locations in the visual field while maintaining gaze at a
fixation cross. Again, we analyzed the results for the best five subjects only
and focus on left versus right covert attention. Data was recorded using an
MEG system which provides whole-head coverage using 275 gradiometers. For
each subject, we collected about 128 trials per condition. Data was detrended
and downsampled from 1200 Hz to 300 Hz. Based on prior knowledge [5], we
used only 41 occipital sensors and focused again on the 8–14 Hz alpha band.
We discarded the first 500 ms of the attention period to prevent the effect of
evoked response and divided the remaining two second attention period into 15
segments each of which has 50% overlap with its neighbors. Again, data was
normalized to have zero mean and a standard deviation of one.

4 Experimental results

In order to get insight into how classification performance depends on the fea-
ture representation, we computed the accuracy (proportion of correctly classified
cases) using regularized logistic regression for different values of the regulariza-
tion parameter λ, based on a five-fold cross-validation scheme [12]. For each
subject we varied λ from 10−14 to 109, as the optimal value of λ is subject
specific. The change in accuracy as a function of λ is shown in Fig. 1 for the
imagined movement and covert attention datasets.

Figure 1 demonstrates that, for the datasets used, averaging seems to be
better than concatenation. Furthermore, standard deviation of the accuracy for
the covert attention paradigm is higher than that of the imagined movement
paradigm, indicating a larger between-subject variability. Accuracy is lower for
the imagined movement paradigm since this is a ternary instead of a binary
classification problem (left, right and no movement). Results also show that
regularization of differences is able to interpolate between the two extremes
of concatenation and averaging and can thus in principle be used to select an
optimal setting of the parameters. However, in order to pick the optimal λ we
need both an inner and outer cross-validation. Specifically, we kept one fold
out of five for testing and train based on the remaining four folds. Then we
performed five-fold cross-validation using just the training data and calculated
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Fig. 1: The average change in accuracy as a function of λ for the imagined
movement and covert attention datasets. Error bars show standard deviation.
Results obtained using averaging and concatenation are denoted by filled circles.

the log-likelihood for each λ from 10−14 to 109. We used the smallest value
of λ which gave the largest log-likelihood and retrained the classifier using all
training data in order to test the classifier on the test data.

Imagined movement Covert attention
Subject Conc. Avg. Reg. Subject Conc. Avg. Reg.

1 0.38 0.46 0.48 6 0.72 0.77 0.77
2 0.40 0.46 0.46 7 0.64 0.72 0.71
3 0.52 0.57 0.58 8 0.53 0.63 0.63
4 0.49 0.59 0.58 9 0.52 0.61 0.61
5 0.44 0.60 0.61 10 0.64 0.59 0.62

Avg. 0.45 0.54 0.54 Avg. 0.61 0.66 0.67

Table 1: Classification performance using different strategies for the imagined
movement and covert attention datasets. The bold ones are significantly better
than assigning all data to the majority class (one-sided binomial test, p = 0.05).

The accuracy obtained using concatenation (lowest value of λ), averaging
(highest value of λ), and regularization of differences for each subject using
inner and outer cross-validation is given in Table 1. Significance levels were
computed by comparing performance with a classifier that assigns each trial
to the majority class using a one-sided binomial test [13]. Regularization of
differences outperforms both concatenation and averaging in terms of significance
(lower p-values on average) and average accuracy.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



5 Conclusions

We used regularization of differences as a regularizer in the classification of BCI
data based on logistic regression. In general, averaging tends to outperform con-
catenation, presumably due to the fact that signal to noise ratio increases by
averaging over consecutive segments. However, this is afforded by the employed
BCI paradigms since the signal of interest is relatively stable over a prolonged
period (i.e., repetitive imagined movement and sustained covert attention). Nev-
ertheless, even for the used datasets averaging is not always the best strategy
for every subject. For example, for the covert attention dataset, concatenation
gave a better performance for Subject 10. Using regularization of differences we
are able to determine the right balance between concatenation and averaging,
improving classification performance on average.
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