
Attractor-based computation with reservoirs for
online learning of inverse kinematics

R. Felix Reinhart1 and Jochen J. Steil2

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University
1-freinhar@CoR-Lab.Uni-Bielefeld.de, 2-jsteil@CoR-Lab.Uni-Bielefeld.de

Abstract. We implement completely data driven and efficient online
learning from temporally correlated data in a reservoir network setup. We
show that attractor states rather than transients are used for computation
when learning inverse kinematics for the redundant robot arm PA-10. Our
findings shade also light on the role of output feedback.

1 Introduction

In robotics, learning is typically constrained by limited resources such as memory
and processing time. Moreover, data is only available sequentially and thus
learning has to cope with temporally correlated data. Standard feedforward
network architectures fail at online learning from temporally correlated data
because of destructive interference. We show that the reservoir computing idea of
a fixed encoding device can address both issues by implementing completely data
driven and efficient online learning for sequence transduction. The reservoir state
encodes the input in a nonlinear and high-dimensional representation. But it is
an open question whether transients or attractor states are used for computation.
We investigate these questions in the framework of an inverse kinematics learning
task. Important is that the presented sequence transduction task is temporal
by means of ordered data presentation, although the mapping is instantaneously
static. It turns out that in this setting attractor-based computation outperforms
computation with transients.
Furthermore, the reservoir model can be extended to a bidirectional and gener-
ative setup which is of particular interest in the context of sensory-motor tasks
[1, 5]. A single network then learns both relations between input and output,
and the reverse mapping that can be used to predict or fill in missing sensory
inputs. In this context, feedback of the network output into the reservoir is
a key ingredient. Although there are successful applications reported that use
reservoir networks with output feedback [1, 5, 6], the effects of output feedback
have not been investigated systematically. In principle, we expect output feed-
back to add information but also to cause additional transients, especially when
online learning is applied. Under the hypothesis of attractor-based computation,
we expect performance to increase if the network is allowed to converge first to
an attractor before read-out is applied. If transients are crucial, it is difficult
to explain robustness and generalization because there is no regularizing factor
which allows to suppress noise in the transients. To verify convergence in the
experimental setting, we use the network state change as criterion and monitor
the standard Hopfield energy.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Fig. 1: (left) Reservoir computing network setup. (right) PA-10 robot arm.

2 Reservoir computing: a simple recurrent network model

We focus on a reservoir network setting as depicted in Fig. 1 (left). The network
architecture comprises a recurrent reservoir network of nonlinear neurons inter-
connecting input and output. All but the read-out weights Wout are randomly
initialized with small weights and stay fixed. Wback can add feedback from the
output neurons to the reservoir. We consider the recurrent network dynamics

y(k+1) = f
(
Winpu(k) + Wresy(k) + Wbackv(k)

)
(1)

v(k+1) = Wouty(k). (2)

u,y and v are the input, reservoir and output neurons, where y is obtained
by applying parametrized activation functions component-wise. We denote the
network state by z(k) = (u(k)T , y(k)T , v(k)T)T .
Reservoir optimization: Optimizing the randomly initialized reservoir is sig-
nificant for learning success. Several approaches have been proposed [2, 4, 6].
We present our results for online reservoir optimization by intrinsic plasticity
and beforehand weight-scaling such that the spectral radius is near unity.
Scaling the spectral radius (SR) of the weight matrix is commonly used in echo
state networks [2, 4]. We use hyperbolic tangent activation functions yi =f(xi)=
tanh(xi) in combination with SR scaling. Usually, a spectral radius around unity
is preferred, but the concrete choice depends on the task at hand.
Intrinsic plasticity (IP) was introduced to reservoir computing in [6]. It is an on-
line and unsupervised self-adaptation rule that optimizes a neuron’s excitability
by adapting the parameters ai, bi of the activation functions yi = fi(xi, ai, bi)=
(1 + exp (−aixi − bi))−1 used in the network equation (1).
Read-out learning: Only the read-out weights Wout are trained by either
backpropagation-decorrelation (BPDC), a supervised online training scheme [6],
or ridge regression. In the proposed setup, where no recurrent connections be-
tween the output neurons exist, the BPDC learning rule simplifies to

Δwout
ij (k) =

η

‖y(k−1)‖2 + ε
yj(k−1) (di(k) − vi(k)). (3)

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Algorithm 1 Convergence algorithm
Require: get external input u(k)
Require: set t=0, Δz=∞, δ=10−6 and tmax =100
1: while Δz > δ and t < tmax do
2: inject external input u(k) into network
3: execute network iteration (1), (2)
4: compute state change Δz = ‖z(t) − z(t − 1)‖2

5: t= t+1
6: end while
7: return t

di(k) is the desired target value of output i at time step k. For each input
pattern u(k), the network dynamics (1), (2) are iterated first, before the read-
out weights Wout are adapted according to (3). For more details about batch
learning with reservoir networks see [2].

3 Transient or attractor-based computation?

We investigate whether reservoir networks of analog neurons compute with tran-
sient dynamics (temporal elusive but reproducible traces in the network state
trajectory) or (fixed point) attractor states in an exemplary sequence transduc-
tion scenario. The idea is to eliminate transients and measure the error, which
we expect to increase if computation is based on transients. Transients are re-
moved by the convergence procedure outlined in Algorithm 1: it iterates the
network dynamics (1), (2) with clamped input pattern u(k) until the network
state change Δz falls below a small constant δ. We show later on that the
network state actually converges.
Test setting: The network model is applied to learn observed motion in joint
and task space of the redundant Mitsubishi PA-10 robot arm (shown in Fig. 1
(right)), a task introduced in [5]. Training data is generated by projecting
a task trajectory specified in Cartesian endeffector coordinates into the joint
space of the PA-10 robot arm by means of the analytically calculated inverse
kinematics. We compute for each task space input (u1(k), u2(k), u3(k))T (with
fixed orientation pointing upwards along the z-axis) the 7-dim target vector
(d1(k), . . . , d7(k))T . Thus the network in Fig. 1 (left) is set up with 3 input and
7 output neurons. For more details see appendix A.
Eliminating transients: harm or bless? Fig. 2 and Table 1 show the mean
square errors for online and batch learning of four model variants (SR/IP and
no/with output feedback) operating in two conditions: (i) presentation of the
input patterns u(k) without convergence (standard operation mode) and (ii)
presentation of each pattern u(k) until the network state converges and then
calculating the error. Note that Algorithm 1 is not used for training.
Surprisingly, all networks perform better in the convergence condition. Without
output feedback the errors are almost equal in both conditions, but conver-

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Fig. 2: Mean square errors for online learning averaged over 100 network ini-
tializations per setup variant operating in standard or converge mode: (left)
spectral radius scaling, (right) intrinsic plasticity learning, no/with output feed-
back (NOF/WOF). Inter-trial variance of errors (not shown) is marginal.

gence improves the performance significantly if the output is fed back into the
reservoir. We also observe this phenomenon for batch learning with ridge re-
gression (see Table 1). We suggest the reason for this effect is that feedback
of defective outputs causes additional transients. Note that the network out-
put is teacher-forced during training meaning injection of exact feedback d(k)
into the network. Learning introduces errors when testing and thus defective
feedback which perturbs the network state. Hence, a different, transient net-
work state is read out explaining the increasing error. Obviously, convergence
recovers the network state apparent during training by balancing external input,
output feedback and internal reservoir dynamics. Although performance is best
without feedback, the errors are competitive when Algorithm 1 is applied.
In general, contraction to stable states improves the performance indicating an
attractor-based computation in this setting. Transients are perturbations and
are induced by the network dynamics (1), (2) during transition between two
attractor states. Remarkable are the similar results for batch and online learning.
Online learning copes with sequential data presentation in the reservoir setting.
Convergence behavior and network energy: The results above indicate
an attractor-based encoding of the input in the reservoir network. But do the
networks actually converge to stable states?

res. opt. feedback standard converge

SR no 0.0016 ± 4.1 · 10−10 0.0012 ± 4.9 · 10−10

yes 0.0142 ± 5.5 · 10−6 0.0014 ± 4.2 · 10−8

IP no 0.0016 ± 1.7 · 10−9 0.0013 ± 1.8 · 10−9

yes 0.0133 ± 4.0 · 10−6 0.0015 ± 5.9 · 10−8

Table 1: Mean square errors with variances for batch learning by ridge regression.
Results are averaged over 100 network initializations per condition.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Fig. 3: Network properties: (left) Average number of steps until network state
converges. (right) Relative network energy during convergence (in last epoch).

In Fig. 3 (left) the average number of iterations 〈t〉 needed for convergence
are plotted over the learning epochs. Important is that the networks actually
converge, i.e. Δz≤δ, within the maximal allowed amount of iterations tmax (see
Algorithm 1). Convergence takes several iterations with clamped input meaning
transients are actually apparent and the results presented in Fig. 3 confirm that
feedback increases duration of these transients.
To complement the results so far, we monitor the network energy

E(t) = −
∑

i,j

zi(t) wij zj(t) +
∑

i

bi zi(t)

for every iteration step t during convergence. We account for different absolute
network energies for each input pattern u(k) and network initialization by pre-
senting relative energies. The network energy anneals to a fixed value below zero
relative to the energy E(0) when starting convergence, as shown in Fig. 3 (right).
With output feedback, we also observe a slower convergence of the network en-
ergy preceded by an overshoot. However, the stable states belong to valleys in
the energy landscape and hold the property Δz≈0, i.e. they are attractors.

4 Conclusion and discussion

We conclude that reservoirs with small weights stay stable despite defective out-
put feedback and cope with online learning from time-series. The presented
convergence algorithm provides a technique to fully exploit the network capa-
bilities. The results are consistent for all experimental variations we considered:
online or batch learning with reservoir optimization by IP or SR scaling using
Fermi- or tanh-activation functions. Note that convergence erases the network’s
memory, which is crucial for prediction tasks with branches depending on the
history. In this context, it is of special interest how transients with appropriate
properties can be obtained [3]. But this is not critical for the presented task.
We use the reservoir model as associative memory with a hidden layer to learn a

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

static mapping, where the fixed feature generation by the reservoir prevents de-
structive interference during online read-out adaptation. The system’s attractor
is a highly nonlinear and smooth representation of the current input, explaining
excellent generalization [5], whereas the network dynamics limit the speed of
convergence to the attractor. The empirical results presented here demand for a
rigorous mathematical analysis of attractor-based input encoding by reservoirs.

A Appendix

Network parameter: All experiments are conducted with reservoirs of 100
neurons. The reservoir neurons are fully connected with input and output. The
input weights Winp are randomly initialized in range [−0.2, 0.2]. Connections
between reservoir nodes are sparse (only 20% of Wres occupied) and initialized
with values ranging from −0.05 to 0.05. In case of output feedback, Wback is
set to random values out of [−0.1, 0.1], otherwise Wback≡0. We present results
for reservoir optimization by IP (desired mean activity μ=0.2 and learning rate
ηIP =0.0002) and without IP. In the latter case, we scaled the spectral radius of
the weight matrix to approximately 0.95.
Training: We use a figure eight-like motion as training data. In task space,
endeffector positions having fixed orientation and are defined by

u1(k) = 0.15 cos(ω̄k), u2(k) = 0.15 sin(2ω̄k), u3(k) = 0.9.

For ω̄ =2π/100 we obtain patterns with a period of 100 samples. Training and
test phases comprise 1000 samples each and were preceded by a washout phase
lasting for a single pattern period. During training, the network is teacher-
forced with the desired target values. Parameters for online BPDC learning (3):
learning rate η=0.05, weight-decay λ=10−5 and a small regularization constant
ε=0.002. For batch learning we use ridge regression with Tikhonov factor α=1,
where in case of IP the network is pretrained for 100 epochs.

References

[1] E. Antonelo, B. Schrauwen and J. V. Campenhout. Generative Modeling of Autonomous
Robots and their Environments using Reservoir Computing. NPL, 26(3):233–249, 2007.

[2] H. Jäger. Adaptive nonlinear system identification with echo state networks.
In NIPS, pages 593–600, 2002.

[3] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Computation,
14(11):2531–2560, 2002.

[4] M. C. Ozturk, D. Xu, and J. C. Principe. Analysis and design of echo state networks.
Neural Computation, 19(1):111–138, 2007.

[5] R. F. Reinhart and J. J. Steil. Recurrent neural associative learning of forward and
inverse kinematics for movement generation of the redundant PA-10 robot. ECSIS Symp.
on LAB-RS, pages 35–40, 2008.

[6] J. J. Steil. Online reservoir adaptation by intrinsic plasticity for backpropagation-
decorrelation and echo state learning. Neural Networks, 20(3):353–364, 2007.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

