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Abstract. In this paper we show a straight forward extension of the fuzzy
Cohen’s-κ to Fleiss’-κ for the determination of classification agreements of
fuzzy classifiers. In addition we investigate the influence of different inter-
pretations of fuzzy intersection in terms of t-norms. These considerations
are done for exemplary artificial data as well as for classification in image
recognition for counting pollen grains.

1 Introduction

Classification problems take a major part in adaptive machine learning tasks.
During the model generation and evaluation, frequently different classification
models have to be assessed. Standard methods for crisp classification are the
evaluation on training and test data or cross-validation approaches in terms of
achieved accuracies. More advanced methods include significance statistics like
conformal prediction [1]. Otherwise, methods from traditional statistics can
be utilized too. Here χ2-statistics as well as the Cohen’s κC-statistics are the
great players if two classifiers have to be compared [2],[3]. For the latter one,
an extension for judgement of more than two classifiers exist, the Fleiss’ κF
[4],[5]. The advantage of these methods is that the comparison is evaluated in
terms of classification agreement over the same data set and not obtained by
achieved accuracies for given test data. In worst case two classifiers with non-
zero misclassifications each could have disjunct subset of the data set were they
fail. In this case accuracy based performance evaluations may suggest stronger
agreement than happens.
For fuzzy classification, the number of available methods is reduced. Fre-

quently, accuracy based methods are applied using the majority vote of a fuzzy
classifier. Yet, this contradicts the aim of fuzzy classification. As shown in [1],
conformal prediction can be applied to achieve information about the confidence
of a fuzzy decision. For Cohen’s κC-statistics, a extension for fuzzy classifiers
was recently proposed [6]. It is based on the utilization of fuzzy-and-operators.
However, a respective extension of Fleiss’ κF doesn’t exist so far. In this paper
we develop such an extension. For this purpose, we first consider the fuzzy vari-
ant of Cohen’s κ. Subsequently we give the equivalent extension of Fleiss’ κF
for the fuzzy case. Moreover, we compare different realizations of the fuzzy-
and-operator in terms of t-norms [7], as it appear in both fuzzy measures with
respect to the interpretability of κC and κF as suggested by Cohen.
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2 Fuzzy Variants of Cohen’s κC and Fleiss’ κF
We look at a classification problem where N data points xk have to be classified
into C (disjoint) subsets. In the case of crisp classification one data point is
classified to one class. The output of a crisp classifier is a vector u (xk) =
(u1 (xk) , . . . , uC (xk)) with each ui ∈ {0, 1} and

P
ui (xk) = 1, i.e. ui (xk) = 1

iff the data point xk is classified into the ith class. In the case of a probabilistic
fuzzy classifier the output is a vector μ (xk) = (μ1 (xk) , . . . ,μ1 (xk)) with now
μi ∈ [0, 1] but constraint

PC
i=1 μi (xk) = 1. A possibilistic variant is obtained if

the latter restriction is neglected.
We now briefly give the original variants of κC and κF following the the

description in [6]. Thereafter we describe the fuzzy variant of κC and explain an
analog approach for κF.

2.1 Original Cohen’s κC and Fleiss’ κF
Cohen’s κC is a statistical measure of inter-rater agreement of two crisp classifiersC1 and C2 taking into account the agreement occurring by chance. It is given by

κC =
po − pc
1− pc (1)

where p0 is the relative agreement among the classifiers C1 and C2 and pc is
the expected agreement by chance. pc is the expected value of the joined event
of classifier C1 and C2 classifying a data point to the same class. Under the
assumption of independent classifiers C1 and C2, we can calculate pc as follows:

pc =
CX
i=1

1X
u
C1
i =0

1X
u
C2
i =0

pC1i · pC2i
³
uC1i · uC2i

´
(2)

The values pC1i and pC2i are the margin probabilities (densities) pCji =
1
N

PN
k=1 u

Cj
i (xk), j = 1, 2. p0 can be counted given a contingency table of

the outcomes of both raters:

p0 =
1

N

NX
k=1

CX
i=1

uC1i (xk) · uC2i (xk) (3)

Fleiss’ κF is a direct expansion of Cohen’s kappa for M > 2 classifiers. We
formulate it for the crisp classification according to the above given description
of Cohen’s κC. Again, pM0 is the counted relative agreement between now the
M classifiers:

pM0 =
1

N

NX
k=1

CX
i=1

MY
j=1

u
Cj
i (xk) (4)

The respective value pMc calculates as follows:

pMc =
CX
i=1

1X
u
C1
i =0

. . .
1X

u
CM
i =0

MY
j=1

p
Cj
i · uCji (5)
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κ - value meaning
κ < 0 poor agreement

0 ≤ κ ≤ 0.2 slight agreement
0.2 < κ ≤ 0.4 fair agreement
0.4 < κ ≤ 0.6 moderate agreement
0.6 < κ ≤ 0.8 substantial agreement
0.8 < κ ≤ 1 perfect agreement

Table 1: Interpretation of κ-values.

whereby we need the latter formulation in the following derivations. Then, the
Fleiss’ κF is also calculated according (1) replacing the respective values.
For both kappa the relation κ ∈ [−1, 1] is valid and the values are interpreted

according to the scheme given in Tab.1.

2.2 Fuzzy Variants of Cohen’s κC and Fleiss’ κF
In case of fuzzy classifiers the discrete values ui are turned into continuous values
μi. We start to derive a fuzzy variant for κC following [6]. We observe that we can
replace the product uC1i · uC2i in (2) and (2) by a logical and-operator without
loss. This motivates the opportunity to do so also in case of fuzzy classifiers
obtaining

P0 =
1

N

NX
k=1

CX
i=1

³
μC1i (xk)

^
μC2i (xk)

´
(6)

Turning from discrete values ui to continuous values μi, the sums over the dis-
crete values for the ui in (2) become integrals over μi. Thus we can calculate the
analog Pc as

Pc =
CX
i=1

Z 1

μ
C1
i =0

Z 1

μ
C2
i =0

p
³
μC1i
´
· p
³
μC2i
´³

μC1i
^

μC2i
´
dμC1i dμ

C2
i (7)

where the values p
³
μC1i
´
and p

³
μC2i
´
are the probability densities of μC1i (x)

and μC2i (x) respectively. In this way, both needed quantities for the (1), can be
computed for fuzzy classifiers.
We now derive the fuzzy variant for Fleiss’ κF, too. For this purpose, we first

rewrite (5) as

pMc =
CX
i=1

1X
u
C1
i =0

. . .
1X

u
CM
i =0

⎛⎝ MY
j=1

p
Cj
i

⎞⎠ ·Ã MY
k=1

uCki

!
.

Now, replacing the product by an and-operator and changing the sums into
integrals over the continuous values μC1i (x) as done for fuzzy κF we get

PMc =
CX
i=1

Z 1

μ
C1
i =0

. . .

Z 1

μ
CM
i =0

⎛⎝ MY
j=1

p
³
μ
Cj
i

´⎞⎠ ·Ã M̂

k=1

μCki

!
dμC1i . . . dμ

CM
i . (8)
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Straight forward we obtain analogously

PM0 =
1

N

NX
k=1

CX
i=1

M̂

j=1

μ
Cj
i (xk) . (9)

Again, the kappa vale is computed inserting PMc and PM0 into (1).
Yet, in the derivation of the fuzzy variants we equivalently replaced the mul-

tiplication by the binary and-operator in the crisp case. Thereafter, we formally
interpreted this operator as being valid also for the fuzzy case. However, the
and-operation for fuzzy values is not uniquely determined. There exist many
possibilities. The respective theoretic basis is the definition by t-norms [7].

2.3 Fuzzy intersections and and-operator based on t-norms

To formalize the intersection/and-operator of fuzzy sets the concept of t-norms
was introduced. A function > : [0, 1]2 → [0, 1] is called a t-norm if the following
holds:

• > (a, 1) = a (neutral element)
• a ≤ b⇒ > (a, c) ≤ > (b, c) (monotonicity)
• > (a, b) = > (b, a) (commutativity)
• > (a,> (b, c)) = > (> (a, b) , c) (associativity)
Obviously, the definition doesn’t determine uniquely a norm. Examples are

• the min-norm >min (a, b) = min{a, b}
• the product norm >prod (a, b) = a · b
• the Lukasiewicz norm >Luka (a, b) = max {0, a+ b− 1}
Using different norms for the calculation of κ will lead to different values.

Therefore, the interpretation according to Tab. 1 may be misleading and has to
be analyzed.

3 Comparison of different t-norms for κC and κF

3.1 Artificial data set

As explained above the choice for the and-operator in case of fuzzy classifiers is
not unique for the calculation of κC and κF. Therefore, we compare the differ-
ent realizations of the t-norm on artificial classifier decisions in dependence of
the deviation of these classification from a related crisp decision. We exemplary
consider the set of three parametrized two-class-classifiers given in Tab2 with
different degrees of fuzziness. We start with investigations for κF. The exper-
iments a), b) and c) have the same degree of agreement of the classifiers but
with increasing level of fuzziness, see Tab2. Hence, the fuzzy κC should yield
approximately the same value as for the original crisp κC = 0.6. The lines 1—3 in
Tab.3 report the results. We can conclude that >min is the only t-norm which
judges the agreement adequately. In experiment d) one decision slowly changes.
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Classifier e0 e1 e2 e3 e4 e5 e6 e7 e8 e9
C1 a a a a a 1− b 1− a 1− a 1− a 1− a
C2 a a a a 1− a a 1− a 1− a 1− a 1− a
C3 a a a a a b 1− a 1− a 1− a 1− a

Table 2: Description of the classifiers for a two-class problem. Depicted are the
fuzzy values for the decision for the repective classifiers for the first class. The
second class is chosen accordingly. Example cases: a) crisp a = 1, b = 0 b)
slightly fuzzy a = 0.95, b = 0 c) moderate fuzzy a = 0.75, b = 0 d) single fuzzy
a = 1, b = 0.95, 0.75, 0.5.

>min >prod >Luka >min >prod >Luka
a = 1.00, b = 1 0.5988 0.5992 0.5992 0.7308 0.7323 0.7323
a = 0.95, b = 1 0.6000 0.4860 0.4909 0.7263 0.5924 0.5921
a = 0.75, b = 1 0.6000 0.1500 0.2000 0.6842 0.1800 0.1394
a = 1, b = 0.95 0.6089 0.6093 0.6093 0.7308 0.7323 0.7323
a = 1, b = 0.75 0.6490 0.6493 0.6494 0.7308 0.7323 0.7323
a = 1, b = 0.5 0.6991 0.6994 0.6995 0.7309 0.7323 0.7324

Table 3: Fuzzy κC (left part) and κF-values (right part) for the agreement of
the classifiers in table 2. In case of κC, the classifiers C1 and C2 were used for
the lines 1—3, for the lines 4—6 these are the classifiers C1 and C3.

The results correspond to line 4—6 in Tab.3. We observe increasing κC-values
with increasing parameter b in C3 which is in agreement that the decision of C3
for class 2 becomes more and more uncertain.
The same experiments were processed for κF but here taking all three classi-

fiers into account. In the crisp case one obtains κF = 0.7333. The fuzzy results
are given in Tab.3 emphasizing the observation for κC: The best results are
obtained for >min.

3.2 Real world data

To test the findings for exemplary artificial data we analyzed classifications of
different classifiers for a 13-class problem. The data set was established together
with the Helmut Hund GmbH, Wetzlar (Germany) in the development of
a fully automated system for the recognition of pollen concentrations in the
ambient air. The Bio Aerosol Analyzer (BAA 1000) collects pollen from the
ambient air. They are prepared as a probe that afterwards is scanned using a
transmitted light microscope. Single objects are segmented from the image and
75 features are extracted for every single object. For the establishment of the
data set we randomly selected 300 samples for each of 13 pollen classes. The
data set was then randomly divided up into balanced training and test set. In
the results we will show comparisons on the test set.
We applied 3 different classifiers, which all give fuzzy decisions. Namely,

these are a multi class Linear Discriminant Analysis (mLDA) and a one-vs.-all
approach for all pollen classes using a simple LDA (OVA-LDA) [8]. Both are
linear classifiers. We compare these results with a FLSOM-classifier, which can
be seen as a non-linear semi-supervised fuzzy-classifier but restricted to the a-
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priori fixed lattice structure [9]. The balancing factor between unsupervised and
supervised learning was set such that unsupervised learning was dominating.
Crisp classification accuracies for the classifiers are 91.6%, 88.5% and 76.3%
respectively (majority vote) which yields a κF = 0.2988. The κF-values for
different t-norms are given in Tab.4. We observe also for this application that

t-norm >min >prod >Luka
fuzzy κF 0.0113 0.0450 0.0155

Table 4: Fuzzy κF-values for the agreement of the three classifiers mLDA, OVA-
LDA, FLSOM with respect to several t-norms in case of the pollen data.

the several norms lead to differences for κF. We can conclude with high certainty
from the above considerations for artificial data that >min will lead to the best
result in case of fuzzy classifiers and, therefore, κF = 0.0133 approximates best
the total agreement recommending only a slight one. This is the consequence
of the disagreement between FLSOM and the both LDA-approaches: mLDA vs.
OVA-LDA: κC = 0.8107, mLDA vs. FLSOM : κC = −0.0281, FLSOM vs. OVA-
LDA: κC = −0.0269 ( κC-values calculated using >min), i.e. semi-supervised
learning with an only small amount of supervision is not sufficient to learn the
classification.

4 Discussion

In this paper we develop a fuzzy extension of Fleiss’ κF following an approach for
fuzzy Cohen’s κC. Furthermore, we discuss for both measures the dependency
on the utilized t-norm with respect to the interpretability. It turns out that the
minimum norm >min seems to be most appropriate.
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