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Abstract. Mimicking biological neurons by focusing on the excitatory/inhibitory 
decoding performed by the dendritic trees is a different and attractive alternative to 
the integrate-and-fire McCullogh-Pitts neuron stylisation. In such alternative 
analogy, neurons can be seen as a set of RAM nodes addressed by Boolean inputs 
and producing Boolean outputs. The shortening of the semantic gap between the 
synaptic-centric model introduced by the McCullogh-Pitts neuron and the 
dominating, binary digital, computational environment, is among the interesting 
benefits of the weightless neural approach. This paper presents an overview of the 
most representative paradigms of weightless neural systems and corresponding 
applications, at abstraction levels ranging from pattern recognition to artificial 
consciousness.  

1 Introduction 

Mainstream artificial neural network (ANN) models are based on weighted-sum-and-
threshold artificial neurons, as the pioneering Threshold Logic Unit, of McCullogh 
and Pitts [1]. The biological analogy behind this model lies on the mapping of the 
synaptic strength between the output produced and transmitted by the neuron’s axon 
and the input of a post-synaptic neuron, into pseudo-continuous numerical weights. 
An important simplification happens in the way inputs to neuron are modeled: all 
synaptic connections terminate directly at the neuron’s soma. Although such specific 
morphological arrangement is plausible in biological terms, the vast majority of 
synapses in the central nervous system terminate at the neuron’s dendritic tree [2]. 
Nevertheless generalizations of artificial weighted-sum-and-threshold neurons, such 
as Sigma-Pi units [3], do exist, this means that the dendritic tree, the mostly 
noticeable morphological structure of the neuron cell, is not being taken into account 
in mainstream ANN paradigms. 
 Weightless neural networks (WNNs) are based on networks of Random Access 
Memory (RAM) nodes. A straightforward analogy between the address decoding in 
RAMs and the integration of excitatory and inhibitory signaling performed by the 
neuron’s dendritic tree can be made: the closer to the neuron’s soma an input synapse 
terminates, greater is the influence of such input in the definition of the neuron’s 
output since it can gate the integration of other synaptic inputs coming from farer 
locations in the dendritic tree [4]. Mapping neuronal excitatory and inhibitory 
signaling into artificial binary input signals is a simple stylization, being Boolean 
representation the simplest and practical form, on which WNNs could have a basis for 
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its biological plausibility. In other words, the “strength” of an input signal depends on 
which height in the dendritic tree the synaptic input connection is placed, quite similar 
to the way RAM address decoding is performed. 
 Independently of how wide this discussion could be, the biological plausibility 
of weightless neural networks had never an important role in the interesting 
explorations already made with such agile and practical neural models. As binary 
digital computing dominates, the semantic gap of the interpretation of WNNs in 
contemporary computers is quite short. In terms of functionality, it is easy to see that 
a weighted-sum-and-threshold artificial neuron having n inputs can be perfectly 
imitated by an n-tuple RAM node [5]. However, the way learning is performed in 
both models differ in the following: the functionality of a neuron can be modified by 
changes in the weight values in the former model, and by changes in the RAM 
contents in the later one.  
 Moreover, the pattern linear separability limitation suffered by the former neural 
model is easily overcame since it is possible to directly map exclusive-OR functions 
on a n-tuple RAM node [6]. In fact, the use of n-tuple RAM nodes in pattern 
recognition problems is dating 50 years by the work of Bledsoe and Browning [7]. 
Some years later, Aleksander introduced Stored Logic Adaptive Microcircuit (SLAM) 
and n-tuple RAM nodes as basic components for an adaptive learning network [8]. 
With the availability of integrated circuit memories in the late 70s, the WiSARD 
(Wilkes, Stonham and Aleksander Recognition Device) was the first artificial neural 
network machine to be patented and produced commercially [9][10]. Other WNN 
models followed, such as PLNs [11][12][13][14], GSNs [15][16][17] and GRAMs 
[18][19], and will be presented in more detail in the next sections.  

2 RAM-discriminators and WiSARD 

A RAM-discriminator consists of a set of X one-bit word RAMs with n inputs and a 
summing device (Σ). Any such RAM-discriminator can receive a binary pattern of X⋅n 
bits as input. The RAM input lines are connected to the input pattern by means of a 
biunivocal pseudo-random mapping. The summing device enables this network of 
RAMs to exhibit – just like other ANN models based on synaptic weights – 
generalization and noise tolerance. 
 In order to train the discriminator one has to set all RAM memory locations to 0 
and choose a training set formed by binary patterns of X⋅n bits. For each training 
pattern, a 1 is stored in the memory location of each RAM addressed by this input 
pattern. Once the training of patterns is completed, RAM memory contents will be set 
to a certain number of 0’s and 1’s. 
 The information stored by the RAM during the training phase is used to deal 
with previous unseen patterns. When one of these is given as input, the RAM memory 
contents addressed by the input pattern are read and summed by Σ. The number r thus 
obtained, which is called the discriminator response, is equal to the number of RAMs 
that output 1. r reaches the maximum X if the input belongs to the training set. r is 
equal to 0 if no n-bit component of the input pattern appears in the training set (not a 
single RAM outputs 1). Intermediate values of r express a kind of “similarity 
measure” of the input pattern with respect to the patterns in the training set. 
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 A system formed by various RAM-discriminators is called WiSARD (Wilkie, 
Stonham & Aleksander’s Recognition Device) [10]. Each RAM-discriminator is 
trained on a particular class of patterns, and classification by the multi-discriminator 
system is performed in the following way. When a pattern is given as input, each 
RAM-discriminator gives a response to that input. The various responses are 
evaluated by an algorithm which compares them and computes the relative confidence 
c of the highest response (e.g., the difference d between the highest response and the 
second highest response, divided by the highest response). A schematic representation 
of a RAM-discriminator and a 10 RAM-discriminator WiSARD is shown in Figure 1. 
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Fig. 1 – Example of a RAM-discriminator and of a WiSARD 

 The performance of the WiSARD depends on n. Specialized responses from 
WiSARD grows with n; on the other hand, generalization capabilities of WiSARD 
grows inversely with n [13]. 

3 PLNs, MPLNs and pRAMs 

Most of the RAM-based neural systems are formed by a single layer of RAM-nodes. 
Aleksander introduced a multilayer architecture (pyramid) [12] formed by new nodes 
called PLN (Probabilistic Logic Node) [11]. A PLN node stores a 2-bit value at each 
of its memory locations: “0”, “1”, and “u”. The latter represents the “unknown” or 
“undefined” state, which is stored in all PLN memory locations before the learning 
phase. The undefined state “u” allows a PLN node to, randomly, output either 0 or 1, 
with the same probability. 
 The pyramid architecture formed by PLN nodes is characterized by having a 
fan-out of 1 and low fan-in. Having a low fan-in, the PLN node saturates very easily 
and it fails to learn new patterns before the training set has been completely presented. 
 The training algorithm consists of replacing u’s with 0’s and 1’s in the following 
way: a training pattern is propagated through the base of the pyramid up to the top, 
where the output is produced; if the pyramid output value matches the desired output, 
then a signal is propagated back to each node in order to make them store all 
randomly generated output values into the currently addressed location at each node. 
If the produced output is not the desired value, then the same input pattern is 
reapplied and the same procedure repeated. 
 In [13] Aleksander proposed a natural extension of the PLN node: the m-state 
PLN (MPLN). In this new model, a wider discrete range of values could be stored at 
each memory location. In addiction, the output function could be even a linear 
function or the sigmoid function. In this model, the learning phase allows for 
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incremental changes of the stored values. New information is acquired after different 
steps, as incorrect information is threw away only after a certain number of errors. 
 In order to incorporate some properties of living neurons, an evolution of this 
model was proposed by Taylor [20]. It can be shown that this new model is equivalent 
to a network of noisy (probabilistic) RAMs (pRAMs). In this model, values belonging 
to [0, 1] can be stored at the memory locations (continuous probability). Given a 
certain input, the contents of memory locations represent the probability that a value 1 
is produced as output. 

4 GSNs and GRAMs 

The GSN (Goal Seeking Neuron) has been developed with the aim of preserving the 
corruption of the information previously stored in PLN nodes. Unlike a PLN, a GSN 
can input, store and output 0’s, 1’s, and u’s. Two different locations are addressed in a 
GNS if the input contains a u. In the same way, if a given memory content is u, the 
corresponding GSN will address two different nodes. 
 GSN has three different modes of operation: validating (can the pattern be 
learned?), learning and recall. The purpose of the validation phase is to check if a new 
pattern can be learnt without corrupting the previously stored knowledge. The value u 
on the output means that the net can learn any desired output. 0 or 1 as output 
suggests that the net can learn only the proposed pattern if the output of the net is the 
desired one. Otherwise, there would be a disruption of information previously stored. 
In case of success of the validation phase, one of the following conditions will occur 
(learning phase): if the desired output is 0 (1) and the addressed contents contain at 
least one 0 (1), then one of these locations is selected randomly and its input address 
becomes, effectively, the desired outputs for nodes in the previous layer; otherwise, 
an undefined location is selected at random (from the addressable set) and the desired 
output is stored in that location and, as above, the address of that location goes back 
to previous layer. The aim of the recall phase is that of producing the most occurring 
value (0 or 1) in the addressed contents. If there are equal numbers of 0’s and 1’s in 
the addressed contents, then the output is u. 
 GRAMs were introduced by Aleksander [18] in order to increase the 
generalization of WNNs at the node level by including a spreading phase in the 
learning algorithm, just after a training pattern is stored. The GRAM behaves like a 
bit-organized random access memory up to the point at which there is a clash between 
attempting to set an address to both 0 and 1, or an address cannot be set according to 
the Hamming distance rule. In such cases the address remains undefined and behaves 
as a random binary string generator. This form of generalization is described as a 
process of spreading, where information set in the RAM through the trained set 
spreads to other locations. In some applications, spreading limited to a radius is 
employed, in the sense that Hamming distances greater than a set limit are ignored. 

5 GNU 

A GNU [21] is a neural state machine formed by a single layer of GRAM nodes in 
which the binary output variables are the same as the state variables. This means that 
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the set of mappings which define the binary output vector is exactly the same as the 
set of mappings which define the binary state vector. 
 The GNU can be configured as a feedforward and/or feed-back system with 
auto-associative memory properties, though hetero-associative mappings are also 
possible. The input field is composed of N bits and the external output field is 
composed of M bits. In the GNU architecture, each node of the network has n (n ≤ N) 
inputs connected to the input field and m (m ≤ M) nodes connected to the output field. 
Each node sampling, from both input and output fields, are randomly established. 
 The storage process in a GNU consists of creating an association between an 
external pattern and its representation, by producing a re-entrant, or stable, state in 
which the network stabilizes in the retrieval phase. The training phase consists of 
applying the same training procedure used at each individual GRAM. In the case of 
trained patterns, they are associated with themselves. This is called “iconic” training 
and the idea is to make a many-to-some mapping of the input in which each node 
samples the patterns that occur at the input. The word “iconic” is used to describe that 
the internal states mirror the patterns of input events. An example of GNU creating an 
association is illustrated in Figure 2. 
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Fig. 2: GNU architecture 

6 Some commercial and software developments. 

The WISARD system was commercialized in 1986 and marketed by Computer 
Recognition systems on the UK. Systems were purchased by the UK police for face 
recognition and fingerprint processing. Further the GNU scheme above was a subject 
of a major grant in the UK that resulted in the MAGNUS system that allowed 
arbitrary structures of interconnected GNUs in order to model brain structures. Barry 
Dunmall of Imperial College also commercialized this system, which became known 
as the Neural Representation Modeller (NRM) which was developed to run under 
Microsoft Windows systems.  This is the system that was most heavily used in order 
to arrive at the material described in [23] where references to details of the NRM 
system can be found. 
 

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



7 Conclusions 

A very brief review of the main weightless neural network paradigms has been 
presented. Although WNNs are not in the mainstream of ANN research, the agility 
and scalability of these models implemented in the existing computing environments 
is very attractive. Recent publications report that the role of WNNs were crucial in 
scientific investigations of very interesting subjects, such as artificial consciousness 
[22][23], as well as in recent development of commercial solutions to important and 
difficult problems, such as automated video surveillance [24], robotics [25], 
acceleration of 3D video animation [26] and automated text categorization and 
clustering [27]. 
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