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Abstract. We apply distance based classifiers in the context of a content
based image retrieval task in dermatology. In the present project, only
RGB color information is used. We employ two different methods in order
to obtain a discriminative distance measure for classification and retrieval:
Generalized Matrix LVQ and Large Margin Nearest Neighbor approach.
Both methods provide a linear transformation of the original features to
lower dimensions. We demonstrate that both methods lead to very similar
discriminative transformations and improve the classification and retrieval
performances significantly.

1 Introduction

Content Based Image Retrieval (CBIR) constitutes an important tool for the
handling of large amounts of visual information in medical applications [1, 2].
Three key steps can be identified in a generic CBIR system: (a) the extraction of
information from images and its conversion to multi-dimensional feature vectors,
(b) the computation of a suitable distance measure which quantifies the (dis-)
similarity of a query image from the reference images, and (c) the identification
of a set of data base images which display the smallest distances from given
query.

Potential descriptors of image content include features which relate to color,
texture, shape, or spatial relationship. Color has proven to be an effective de-
scriptor regarding skin [3], especially in dermatology [4]. Here we address a
specific problem of defining effective color descriptors for CBIR in dermatology.
In [5] it was shown that the representation of an image in terms of color dif-
ferences between lesion and healthy skin is advantageous over the use of the
combined color features. Here, we extend this idea to the use of more general,
discriminative linear combinations To this end we employ two learning tech-
niques: Generalized Matrix LVQ (GMLVQ)[6] and the Large Margin Nearest
Neighbor algorithm (LMNN)[7]. The distance measures are parameterized in
terms of a transformation matrix which is adapted in a data driven learning
process. Both methods lead to very similar features, which significantly improve
the classification and retrieval performance.

After explaining the two approaches, we present first experiments with a
database containing 211 images from four different classes of skin lesions in Sec.
3. We discuss the results in Sec. 4 and conclude with a summary and outlook.
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2 Methods

We will make use of two trainable, distance based classifiers. In both approaches
we employ parameterized distance measures which are adapted in a training
phase, to achieve good classification and retrieval performance. In both schemes,
the adaptive metrics defines a linear mapping of the original features to a lower-
dimensional space, in which standard Euclidean distance can be used.

2.1 Matrix Relevance Learning Vector Quantization

Learning Vector Quantization (LVQ) and its variants belong to a popular family
of prototype-based classifiers. In the following, training is based on examples of
the form {(xi, yi) ∈ R

N}P
i=1, where N is the dimension of feature vectors, P is the

number of samples provided for training and the yi are the corresponding discrete
labels. In a C-class problem, at least C prototypes wi ∈ R

N are determined
as typical representatives carrying labels c(wi) ∈ {1, . . . , C}. Distances between
prototypes and input vectors are determined according to a quadratic measure:

dΛ(w, x) = (x − w)�Λ(x − w) ∈ R
N . (1)

After training, LVQ realizes a ”winner takes all“ or ”nearest prototype“ classifi-
cation scheme. We consider training by a stochastic gradient descent procedure,
which presents a single example data at a time. It is guided by the minimization
of a cost function defined by single example contributions as introduced in [8]:

f = (dΛ
J −dΛ

K)
/

(dΛ
J +dΛ

K) where dΛ
J = dΛ(wJ , xi) and dΛ

K = dΛ(wK , xi) (2)

correspond to the distances of feature vector xi from the closest correct (wrong)
prototype wJ (wK), respectively.

In Generalized Matrix Relevance LVQ, as introduced in [6], gradient based
updates concern, both, the prototypes and the distance measure. The positive
(semi-) definite matrix Λ in Eq. (1) is written as

Λ = Ω�Ω with Ω ∈ R
M×N and, hence, dΛ(w, x) = [Ω (x − w)]2 . (3)

For M < N , the matrix Ω defines a linear transformation to a lower-dimensional
space in which the (squared) Euclidean distance is evaluated, see [9] for details.

For the closest correct prototype wJ and closest wrong prototype wK one
obtains an update of the form

wnew
J = wJ +α1 ·γ+ ·2Λ(x−wJ) and wnew

K = wK +α1 ·γ− ·2Λ(x−wK) (4)

with γ+ = 2 · dΛ
K

/
(dΛ

J + dΛ
K)2 and γ− = −2 · dΛ

J

/
(dΛ

J + dΛ
K)2. (5)

Here, the index J (K) refers to the closest correct (wrong) prototype wJ (wK).
As in many LVQ variants, prototypes are moved towards (away from) the current
training data, if the labels of prototype and example agree (disagree), respec-
tively. The corresponding matrix update reads

ΔΩmn = −α2 ·
(

γ+ · ∂dΛ
J

∂Ωmn
+ γ− · ∂dΛ

K

∂Ωmn

)
. (6)
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In addition, the transformation matrix Ω is normalized after each learning step
such that

∑
i Λii =

∑
mn Ω2

mn = 1. Note that the learning rates α1 and α2 can
be chosen independently. In general, we set α1 � α2 which implies that changes
of the metric occur on a much slower time scale than those of the prototypes,
for further information see [10].

2.2 Large Margin Nearest Neighbor Algorithm

The k-Nearest Neighbor (kNN) rule is one of the most basic and simplest meth-
ods for classification. It labels a novel feature vector by a majority vote among its
k nearest neighbors in the training set. Thus, its performance depends crucially
on the metric used for the identification of neighbors. In [7], the Large Margin
Nearest Neighbor (LMNN) algorithm is introduced. The aim of the training pro-
cess is that the κ nearest neighbors of an example data belong to the same class
with high probability. At the same time, different classes should be separated
by a large margin. The corresponding optimization problem is convex and the
global optimum can be found by means of semi-definite programming [7]. Note
that the computational effort of the algorithm grows with the parameter κ.

The LMNN algorithm provides a discriminative distance measure for the k-
NN classifier which can be written as d(xi, xj) = [Ψ(xi − xj)]

2
. Here, Ψ denotes

an M ×N matrix which is the counterpart of the matrix Ω obtained in GMLVQ,
cf. Eq. (3). All results presented in the following were produced with the code
made available at www.weinbergerweb.net [7] using default parameters.

2.3 Canonical Representation of the Transformations

The matrices Ω learned by GMLVQ and Ψ obtained by the LMNN algorithm are
not uniquely determined: The distance measures are, e.g., invariant under rota-
tions in feature space. We identify unique Ω̂ and Ψ̂ by decomposing Λ = Ω�Ω
and Υ = Ψ�Ψ in a canonical way: We determine the normalized eigenvectors
v1, v2, . . . ,vM corresponding to the M ordered non-zero eigenvalues of Λ or Υ,
λ1 ≥ λ2 ≥ · · · ≥ λM and define Ω̂ or Ψ̂ as:

{Ω̂|Ψ̂} =
([√

λ1v1,
√

λ2v2, . . . ,
√

λMvM

])�
∈ R

M×N . (7)

While this does not alter the classifier and retrieval system, it allows for direct
comparison of Ω̂ and Ψ̂.

3 Experiments

Results presented here are based on a dataset of images provided by the De-
partment of Dermatology at the University of Groningen. Currently, this data
base contains 47621 images from 11361 patient sessions. A subset of 211 images
was manually labeled by dermatologists, who assigned each image to one of four
classes of lesions. We will refer to these as brown (class 1), white (2), blue (3)
and red (4) with 54, 46, 29 and 82 samples respectively, see [5] for details.
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The original features were manually extracted by taking the average color of
a region of lesion and a region of healthy skin [5]. Three color components for
each of the two regions result in six-dimensional original feature vectors which
are z-transformed resulting in zero mean and unit variance features.

We represent the data by three-dimensional vectors which are obtained from
the original data by means of a linear mapping. To this end, we first apply the
GMLVQ(3 × 6) algorithm[9], as given by Eqs. (4, 6). In the training process
we start matrix learning after tm = 50 of, in total, 500 epochs and apply a
learning rate schedule of the form α1,2(t) = αstart

1,2

/
[1 + (t − 1)Δα1,2] . Here, t

counts sweeps through the dataset, and αstart
1 and αstart

2 denote the initial rates
for prototype and matrix updates. In all runs we set αstart

1 = 10−2, Δα1 =
Δα2 = 10−4 and αstart

2 = 10−3. Initial positions wi(0) of the prototypes were
determined by randomly selecting 1/3 of the feature vectors in class c(wi) and
taking the respective mean. Relevance initialization was done by generating
independent random Ωij uniformly in [−1, 1] and subsequent normalization.

The dataset D is divided in 10 disjoint subsets Ds, s = 1 . . . 10, of approx-
imately equal size which yields 10 training datasets Dt

s = D/Ds. For each set
we compute the canonical representation Ω̂ and average it over 10 initializations
and subsequently over the 10 training sets. LMNN obtains a unique, global
optimum of the cost function and when using the original features there is no
training process involved. Thus, in both cases, the outcome is not influenced by
initialization or the randomized training procedure.

4 Results

Figure 1 shows the retrieval rates vs. the number k of retrieved images. The
accuracies quantify the percentage of images from the same class among the
k retrieved data base images. Results are displayed for the GMLVQ(3 × 6)
algorithm and for two versions of LMNN. They differ with respect to the number
κ of neighbors taken into account in the training phase: In the first, κ equals
the number k of retrieved images in the working phase, in the second κ = 25 for
all k. In the latter case the retrieval performances of LMNN and GMLVQ are
comparable, which is also reflected in the fact that the obtained matrices Ω̂ and
Ψ̂ are very similar, cf. Fig. 2. Using smaller κ reduces the computational cost of
LMNN, but at the same time its performance deteriorates.

In general, the adaptation of the distance measure improves the retrieval
performance significantly over the use of the original features or the difference
features suggested in [5]. As can be seen in Fig. 2, the canonical transformations
Ω̂ obtained by GMLVQ and Ψ̂ from LMNN with κ = 25, on average over the
ten fold training processes, are almost identical.

5 Conclusion and Outlook

Our results show that the performance of the retrieval system can be improved
significantly by choosing an appropriate distance measure. The application of
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Fig. 1: The retrieval rates for colorspace RGB vs. the number k of retrieved
images. The four rightmost figures show the class-specific retrieval rates and
their variation with random initialization σinit and with the dataset εdata. LMNN
is trained with, either, κ = k (dotted lines) or with κ = 25 (dashed lines).

Fig. 2: Canonical transformations of RGB features on average over data sets
and initialization. Left panel: Multipliers Ω̂ from GMLVQ which define the new
features as linear combinations of the six original features. Right panel: the
same for Ψ̂ from LMNN.

̂ ̂

LMNN seems natural, since the retrieval is also based on a kNN approach. How-
ever, our investigation shows that the GMLVQ approach outperforms LMNN if
the latter takes only a relatively small number κ of neighbors into account in
the training process. For larger κ the obtained metric becomes very similar to
that of GMVLQ and, consequently, the retrieval performances are comparable.
The computational effort for GMLVQ training is typically lower than that of the
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LMNN optimization where it grows with κ. The use of large κ decreases the
influence of single examples. The same effect is achieved in GMLVQ through
the use of prototypes. An important advantage of the GMLVQ approach is its
greater potential with respect to extensions. We will address, e.g., the use of
local metrics defined in different areas of the features space.

We have concentrated here on the RGB color space as one example. Similar
improvements of retrieval by metric adaptation are observed for representations
like LCH, HSV, or XYZ, details will be published elsewhere. The use of color
features only constitutes, of course, a significant restriction of this initial study.
Obviously, other features like shape and texture should play an important role
in lesion classification and retrieval. Therefore, we intend to apply the metrics
adaptation schemes in CBIR using more general sets of features.
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