
Non-Markovian Processes Modeling with Echo
State Networks

Xavier Dutoit1, Benjamin Schrauwen2, Hendrik Van Brussel1 ∗

1- Katholieke Universiteit Leuven - Mobile Learning Robots Research Group
Celestijnenlaan 300b, 3000 Leuven - Belgium

2- Universiteit Gent - Dept of Electronics and Information Systems
Sint Pietersnieuwstraat 41, 9000 Gent - Belgium

Abstract. Reservoir Computing (RC) is a relatively recent architecture
for using recurrent neural networks. It has shown interesting performance
in a wide range of tasks despite the simple training rules. We use it here in
a logistic regression (LogR) framework. Considering non-Markovian time
series with a hidden variable, we show that RC can be used to estimate the
transition probabilities at each time step and also to estimate the hidden
variable. We also show that it outperforms classical LogR on this task.
Finally, it can be used to extract invariants from a stochastic series.

1 Introduction

The everyday life is full of phenomena which, most of the times, can be described
by a process which undergoes a series of discrete and finite states.

With those phenomena, it is interesting to try and estimate what the next
state will be. It is even more informative to assign probabilities to all the possible
next states at a given time. Logistic regression (LogR) is a mathematical tool
which, given an actual series of states, computes the probabilities associated
with each state transition.

This work is a preliminary study on using Reservoir Computing (RC) [1,
2, 3, 4] with LogR. The idea underlying RC is to use a large recurrent neural
network and to train only the output layer. This training consists here of LogR
in order to estimate the transition probabilities of a non-Markovian process.
When trained on the reservoir activity, LogR can use the short-term memory
and the non-linearities introduced by the reservoir.

2 Task

We consider stochastic time series where a process is at each time step n =
1, . . . , Nn in a state s[n] ∈ S = {s1, s2, . . . , sNs}. The transition from a state
s[n] to the next state s[n+1] is described by a set of memory-dependent rules R
and, if no rule applies, by a transition probability. A rule consists of a set of 3
states {si, sj , sk}. If the system was in the first two states si and sj consecutively,
then the next state will be sk with probability 1a. If, for the current states, no

∗This work was partially funded by the FWO Flanders project G.0317.05.
aNote that there are no incompatible rules in R: if {si, sj , sk} ∈ R, then ∀l �= k :

{si, sj , sl} �∈ R; so there are at most N2
s rules.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

rule applies, then the transition probability depends only on the current state
and on a binary hidden state s̃[n] ∈ {0, 1}. The transition probability is one
out of two predefined probabilities, depending on the current hidden state. This
hidden state is described by a Poisson random variable: at time step 1, it is 0
or +1 with equal probability, and the probability that it stays in this state until
time step n is given by e−µ · μn/n!; if the state changes, the probability that it
stays in this new state for another n time steps is given by the same formula.

This could for instance model the (discretized) activities of a human user
where the transitions depends also on her/his mood (the hidden state) and some
invariants (the predefined rules).

A time series generation is then completely described by two transition ma-
trices P1 and P2, a parameter μ and a set of rules. Formally, the probability
P (n, k) that the process is in state k at time step n is given by:

P (1, k) := P (s[1] = sk) = 1/Ns

P (2, k) := P (s[2] = k|s[1] = j) = P1(j, k) · s̃[1] + P2(j, k) · (1 − s̃[1])
P (n, k) := P (s[n] = sk|s[n − 1] = sj , s[n − 2] = si) =

=

⎧⎨
⎩

1 if (si, sj , sk) ∈ R
0 if ∃l �= k such that (si, sj , sl) ∈ R
P1(j, k) · s̃[n − 1] + P2(j, k) · (1 − s̃[n − 1]) otherwise

∀n > 2. (1)

3 Approach

To estimate the transition probabilities at each time step, we use an Echo State
Network (ESN)[1]. An ESN is described by an input matrix Wr

i, a reservoir
matrix Wr

r, a bias matrix Wr
b and an output matrix Wr

o. At each time step t,
the reservoir activity r[t] is computed according to:

r[t] = f
(
Wr

i · i[t − 1] + Wr
r · r[t − 1] + Wr

b

)
, (2)

where i[t] is the input at time step t, f(.) is a non-linear function (we use here a
hyperbolic tangent), and the initial activity is r[0] = 0. The output ô[t] is given
by ô[t] = fout(Wr

o · r[t]), where we use LogR as fout (see later, Equation (4)).
For more details on the reservoir implementation, please refer for instance to [1].

It has been seen in the experiments that the performance could be improved
by using the ESN at a faster rate than the process. In practice, the same input
is repeated for text time steps. We will thus distinguish process time steps
n = 1, 2, . . . , Nn and reservoir time steps t = 1, 2, . . . , Nn · text. At reservoir time
step t, the input i[t] encodes the state s[n] of process time step n = �t/text�b.
Reciprocally, a state s[n] is encoded in inputs i[(n − 1) · text + 1] to i[n · text].

With this trick, the reservoir can get closer to the attractor corresponding
to the current process state. However, the reservoir activity should include
information not only about the current process state, but also about the past

b�x� denotes the smallest integer i such that x ≤ i.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

P1 P2 R
2
6664

0.0 0.9 0.1 0.0 0.0
0.0 0.3 0.0 0.7 0.0
0.0 0.3 0.7 0.0 0.0
0.9 0.0 0.1 0.0 0.0
0.0 0.0 0.4 0.6 0.0

3
7775

2
6664

0.0 0.2 0.8 0.0 0.0
0.0 0.0 0.8 0.0 0.2
0.7 0.0 0.0 0.3 0.0
0.0 0.7 0.0 0.3 0.0
0.4 0.0 0.0 0.0 0.6

3
7775

{4, 2, 1}
{3, 3, 2}
{4, 5, 3}
{3, 1, 4}
{2, 1, 5}

Table 1: Transition matrices and set of rules used to generate the time series

state (as the process transitions depend on the last 2 states); so one should also
not get too close to an attractor, which would mean loosing all memory.

The input i[t] is a (Ns) × 1 column vector representing the state s[�t/text�]
(ik[t] is 1 if s[�t/text�] = k, and −1 otherwise).

Reciprocally, the reservoir activity is down-sampled to align it back with
the original process. For each process time step n, the corresponding reservoir
activity are r[(n − 1) · text + 1] to r[n · text]. The first text − 1 samples are
discarded, and the down-sampled reservoir activity r̃[n] corresponding to state
s[n] is defined as r̃[n] = r[n · text].

As the process is stochastic, the goal is not to estimate the next state, but
rather the probability associated to each possible next state. The output is then
computed by LogR [5, 6]. The main advantage of the ESN approach (and of
RC in general) is that only the output matrix Wo

r is trained (the other matrices
are created randomly beforehand). It is trained by minimizing the penalized
negative log-likelihood:

Wo
r = argmin

W

(
− log

(Nn∏
n=1

p̂(s[n], r̃[n],Wo
r)
)

+ λ

Ns−1∑
k=1

‖Wk‖2

)
, (3)

where λ is a regularization parameter and p̂(s[n], r̃[n],Wo
r) is defined as:

p̂(k, r̃[n],Wo
r) =

exp
(
Wo

r,k · r̃[n]
)

1 +
∑Ns−1

i=1 exp
(
Wo

r,i · r̃[n]
) := P̂ (n, k) ∀k < Ns,

and p̂(Ns, r̃[n],Wo
r) = 1 −

Ns−1∑
i=1

p̂(i, r̃[n],Wo
r) := P̂ (n, Ns), (4)

Wo
r,k being the k-th row of Wo

r. Training the output matrix can then be done
by using a iteratively re-weighted least square algorithm, as in e.g. [7].

4 Results

We consider time series of length Nn = 100 with Ns = 5 different states described
by the two transition matrices and the set of 5 rules in Table 1 (and with μ = 10).

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

At each time step, the goal is to estimate the transition probabilities to each
of the possible next states. The training is done with 10 different time series; 8
are effectively used for training, one is used as a validation error to optimize the
regularization parameter λ, and one is used for testing.

To account for the randomness in the creation of the reservoir, several dif-
ferent reservoirs of 50 neurons are createdc. Several values have been tested for
the text parameter. For each possible value, 25 reservoirs have been tested. The
average negative log-likelihood as a function of text is shown in Figure 1(a), with
the bars denoting the standard deviation. For the optimal value text = 5, the
average negative log-likelihood is 0.85 (with a standard deviation of 0.06).

When text is increased, the error first decreases and then increases again.
When the same input is repeated for several time steps, the reservoir activity
goes toward an attractor. Most of the time, no rule applies and the probability
transition depends only on the current state (and on the hidden state). So most
of the time, the attractor corresponding to the current state can be mapped to
the desired output. However, when a rule does apply, it is necessary to have
information about the past state as well. There is thus a trade-off, which can be
seen in the error curve.

As a baseline, we try two other approaches. In the first one, no ESN is
used and LogR is directly applied to the process state (later called Direct LogR
or DLR). To have a more fair comparison, as the ESN has 50 neurons, the
last 50 states are used as input, i.e. we use use the estimate p̂(k, I50[n],W)
rather than p̂(k, r̃[n],W)) (where I50[n] is the vertical concatenation of i[n] to
i[n − 49]). In the second one, an ESN is used but the readout is computed
with standard Linear Regression (LinR). Although LinR is not meant to output
probabilities but rather exact values (and nothing ensures that the LinR output
will lie between 0 and 1), it is interesting to apply the same error measures as
with LogR.

With the ESN, the expected values of P̂ (n, k) averaged over the time steps
when a fixed rule appliesd and averaged over the time steps where no rule applies
are very different. The expected values, averaged over all the states and all the
time samples of a test run, are plotted in Figure 1(b). The upper plot is the
expected value when a rule applies, and the lower one when no rule applies.
Whenever a rule applies, the estimation of the ESN is close to one. In fact,
P̂ (n, k) is larger than 0.9 in 87% of the cases when a rule applies (whereas with
DLR, the output is larger than 0.9 in only 31% of the cases and in 74% of the
cases with LinR).

For text = 5, the optimal regularization parameter is 2 · 10−3. The output
on a test sample of the process of a reservoir trained with such parameter is
given in Figure 1(c). The solid lines represent the estimations P̂ (n, k), and the
dots the actual transition probabilities P (n, k), for each of the 5 different states.

cA reservoir is created as follows: each element of Wr
r is sampled from a normal distribution,

and the whole matrix is then rescaled to have a spectral radius of 0.99; each element of Wr
i

and Wr
b is drawn from a 0-mean standard distribution with variance 0.1 and 0.01, respectively.

di.e. time steps n s.t. (s[n−2], s[n−1], s[n]) ∈ R, which represent 18.63% of the time steps
in the test samples used here.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

1 2 5 10 25 50
0.75

0.8

0.85

0.9

0.95

1

1.05

t
ext
(a)

lo
g−

lik
el

ih
oo

d

0 0.2 0.4 0.6 0.8 1

0

0.5

1

R
U

LE

Target

ESN+LogR

ESN+LinR

DLR

0 0.2 0.4 0.6 0.8 1

0

0.5

1

N
O

 R
U

LE

Transition probability
(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

k=
1

Transition probability

P̂ (n, k) P (n, k)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

k=
2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

k=
3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

k=
4

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

k=
5

process time step n
(c)

Fig. 1: (a) average negative log-likelihood as a function of text (mind the y axis).
(b) expected value of actual (stars) transition probability and the estimated ones
(LogR: crosses, LinR: circles, DLR: triangles), when a rule applies (upper plot)
or not (lower plot). (c) Estimation from the reservoir (solid line) and actual
transition probability (dots), for each of the 5 different states.

We can see that the estimation is in general close to the actual probability. It is
then possible, given only a few samples of a random process (in this case 10 sam-
ple of 100 transitions), to estimate correctly the actual transition probabilities
underlying the process generation.

The negative log-likelihood, averaged over 10 new test time series, is 0.82. It
is 1.24 for DLR and 1.06 for LinR. Another interesting error measure, when the
actual probability distribution function P (n, k) is known, is the Wasserstein dis-
tance dW (n) =

∑Ns

k=1 |
∑k

j=1 P (n, k) −∑k
j=1 P̂ (n, k)|. The average Wasserstein

distance is 6.31 · 10−2 (and 7.3 · 10−2 with LinR and 1.26 · 10−1 with DLR).
Moreover, the most likely estimated state corresponds with the actual most

likely statee 79% of the time with LogR, 79.2% with LinR and 59% with DLR,
and it corresponds to the actual statef 66.3% of the time with LogR, 68% with
LinR and 54.5% with DLR (the actual state corresponds with the actual most

ei.e. arg maxk P (n, k) = argmaxk P̂ (n, k)
fi.e. s[n] = s

arg maxk P̂ (n,k)

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

likely stateg 83.3% of the time). So ESN-based techniques can be used to esti-
mate the next state of such a time series.

5 Conclusion

We considered time series where the transition from one state to the next one
depends on the current time and also on a set of predefined rules. We considered
3 different techniques: an ESN with a readout trained with LogR, an ESN with
a readout trained with LinR and a direct application of LogR on a windowed
version of the input data.

When an ESN is used, it is possible to estimate the transition probabilities
with a low error even when they are complex and involve memory and fixed
rules. Moreover, it is possible to detect invariant features, i.e. events happening
with a probability equal to 1. On the other hand, a direct application of LogR
on the input is unable to detect such invariants.

To the best of the knowledge of the authors, this is the first time LogR is
applied to an ESN. This is just a preliminary approach and the results are only
slightly better than classical LinR. However, it shows than ESN can be used to
estimate probabilities rather than deterministic values. ESN with LogR training
could then be applied to a broader class of problems than the ones considered
so far.

In the experiments, we have seen that the results can be improved by “ex-
tending” the reservoir time with respect to the actual time series time. This
could possibly be done in a more natural way by using layered ESNs [8] or by in-
creasing the weights of the input matrix. Both directions should be investigated
in the future.

References

[1] H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks.
Technical Report GMD 148, German National Research Center for Information Technology,
2001.

[2] W. Maass, T. Natschläger, and H. Markram. Real-Time Computing Without Stable States:
A New Framework for Neural Computation Based on Perturbations. Neural Computation,
14:2531–2560, 2002.

[3] J. J. Steil. Backpropagation-Decorrelation: online reccurent learning with O(N) complex-
ity. Proceedings of the International Joint Conference on Neural Networks, 1:843–848,
2004.

[4] D. Verstraeten, B. Schrauwen, M. D‘Haene, and D. Stroobandt. An experimental unifica-
tion of reservoir computing methods. Neural Networks, 20(3):391–403, 4 2007.

[5] D.W. Hosmer and S. Lemeshow. Applied Logistic Regression. Wiley, 1989.

[6] F.C. Pampel. Logistic Regression: a Primer. Sage, 2000.

[7] P. Karsmakers, K. Pelckmans, and J. Suykens. Multi-class kernel logistic regression: a
fixed-size implementation. In Proceedings of the IJCNN 2007, pages 1–4, 2007.

[8] M. Lukoševičius. Echo State Networks with Trained Feedbacks. Technical report, Jacobs
University Bremen, 2007.

gi.e. s[n] = sarg maxk P (n,k)

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

