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Abstract. Due to the tremendous increase of electronic information
with respect to the size of data sets as well as dimensionality, visualiza-
tion of high-dimensional data constitutes one of the key problems of data
mining. Since embedding in lower dimensions necessarily includes a loss
of information, methods to explicitly control the information kept by a
specific visualization technique are highly desirable. The incorporation
of supervised class information constitutes an important specific case. In
this contribution we propose an extension of prototype-based local matrix
learning by a charting technique which results in an efficient nonlinear di-
mension reduction and discriminative visualization of a given labelled data
manifold.

1 Introduction

Visualization of high-dimensional data constitutes an active field of research,
see e.g. [1, 2, 3] for recent overviews. The embedding of high-dimensional data
into lower dimensionality is necessarily linked to loss of information. Since the
relevant information depends on the situation at hand, data visualization consti-
tutes an inherently ill-posed problem. In consequence, visualization techniques
address different objectives such as distance or topology preservation.

One systematic way to explicitly guide the information conserved in a low-
dimensional embedding has been pioneered in [4]: auxiliary information is incor-
porated and only the aspects which contribute to this information are visualized.
The approach [4] proposes a corresponding adaptation of the self-organizing map
(SOM, [5]) resulting in an accurate but very costly model. Explicit class labels
constitute one relevant special case of this general approach. This setting is ad-
dressed by classical linear discriminance analysis (LDA, [6]), which is restricted
to a linear visualization in at most C − 1 dimensions, C being the number of
classes [1]. Alternative linear discriminative visualizations include targeted pro-
jection pursuit [7] and discriminative component analysis [8]. Nonlinear exten-
sions can be reached by kernelization as proposed e.g. in [6], leading to quadratic
complexity w.r.t. the number of data points. Alternatives include an extension
of SOM, incorporating class labels into its cost function [9] and other supervised
techniques, like model-based visualization [10] and parametric embedding [11]
among others.

In this contribution we propose an efficient nonlinear discriminative visualiza-
tion technique which combines prototype-based classification and recent matrix
learning schemes, resulting in local linear views of the data and a charting step
which merges the individual projections. The procedure leads to an explicit
nonlinear mapping of the data manifold to lower dimensions.
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2 Prototype-based matrix learning

Learning vector quantization (LVQ) [5] constitutes a particularly intuitive clas-
sification algorithm which represents data by means of prototypes. LVQ itself
constitutes a heuristic algorithm, hence extensions have been proposed for which
convergence and learnability can be guaranteed [12, 13]. One particularly cru-
cial aspect of LVQ schemes is the dependency of the underlying metric, usually
the Euclidean metric. Therefore, general metric adaptation has been introduced
into LVQ schemes [13, 14]. Besides an increased capacity, linear data visualiza-
tion schemes within the receptive fields of the classifier are provided [15]. This
scheme will constitute the first step of our visualization pipeline.

Assume labelled training data {xi, c(xi)}N
i=1 ∈ R

n × {1, . . . , C} are given.
The aim of LVQ is to find k prototypes wj ∈ R

n with class labels c(wj) ∈
{1, . . . , C} such that they represent the classification as accurately as possi-
ble. A data point xi is assigned to the class of its closest prototype wj where
d(xi, wj) ≤ d(xi, wl) for all j �= l. d usually denotes the squared Euclidean
distance d(xi, wj) = (xi − wj)�(xi − wj). Generalized LVQ (GLVQ) adapts
prototype locations by minimizing the cost function

EGLVQ =
N∑

i=1

Φ
(

d(wJ , xi) − d(wK , xi)
d(wJ , xi) + d(wK , xi)

)
, (1)

where wJ denotes the closest prototype with the same class label as xi, and wK

is the closest prototype with a different class label. Φ is a monotonic function,
e.g. the logistic function or the identity, which we used in this work. This cost
function aims at an adaptation of the prototypes such that a large hypothesis
margin is obtained, this way achieving correct classification and, at the same
time, robustness of the classification. A learning algorithm can be derived from
the cost function EGLVQ by means of a stochastic gradient descent as shown
in [13, 12]. Matrix learning in GLVQ (GMLVQ) substitutes the usual squared
Euclidean distance d by a more advanced dissimilarity measure which carries
adaptive parameters, thus resulting in a more complex and better adaptable
classifier. In [15], it was proposed to choose the dissimilarity as

dk(wk, xi) = (xi − wk)�Λk(xi − wk) (2)

with an adaptive local, symmetric and positive semidefinite matrix Λk ∈ R
n×n.

It corresponds to piecewise quadratic receptive fields. Positive semidefiniteness
and symmetry can be guaranteed by setting Λk = Ω�

k Ωk for Ωk ∈ R
a×n with

arbitrary a ≤ n, so data are transformed locally by Ωk according to the classifi-
cation task. Optimization takes place by a gradient descent of the cost function
EGLVQ (1) with subsequent normalization

∑
i[Λk]ii = 1. To prevent oversimplifi-

cation effects we substract a regularization term μ/2 · ln(det(ΩkΩ�
k )) with μ > 0

from the cost function, see [14] for details. The precise update formulas and
definitions of parameters can be found in [15, 14]. Note that Ωk is not uniquely
given by (1), the dissimilarity being invariant under rotation, for example. We
choose a unique representation Ω̂k of Ωk by using a canonical representation,
which is explained in [15].
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Besides providing local classification rules, matrix adaptation gives rise to
local linear transformations of the data space

Pk : x �→ Ω̂�
k (x − wk) (3)

which emphasize the class represented by wk. We can restrict the rank of Ωk ∈
R

m×n to m ∈ {2, 3}, such that low-dimensional visualizations are obtained.
Alternatively, we can extract the largest eigenvectors from Ω̂k. For identical
Ω̂k = Ω̂ for all k, a global linear discriminative visualization is obtained [15].

3 Visualization by matrix charting

For general data sets, a faithful global linear visualization will not be possi-
ble. Therefore, we apply an alternative which glues together the local linear
projections Pk provided by local GMLVQ to a global nonlinear discriminative
embedding of the data. For this purpose, we use a technique introduced in [16] in
the frame of unsupervised data visualization. Local GMLVQ provides k local lin-
ear projections Pk(xi) ∈ R

m for every point xi. We assume that responsibilities
pki = pk(xi) of prototype wk for data point xi are available with

∑
k pki = 1,

e. g. chosen as pk(xi) ∝ exp(−(xi − wk)�Λk(xi − wk)/σk) where σk > 0 is
an appropriate bandwith. The bandwith σk has to be determined appropriately
such that a reasonable overlap of neighbored charts is obtained. One way is to
set σk as half the mean Euclidean distance of prototype wk to its closest k1

prototypes, k1 being a reasonable fraction of k. Charting as introduced in [16]
finds affine transformations Bk : R

m → R
m of the local coordinates Pk such

that the resulting points coincide on overlapping parts, i.e. it minimizes the cost
function

Echarting =
∑
i,k,j

pkipji‖Bk(Pk(xi))) − Bj(Pj(xi))‖2 . (4)

An algebraic solution can be found by reformulating the problem as a generalized
eigenvalue problem, see e.g. [2]. This leads to a global embedding in R

m

x �→
∑

k

pk(x) · Bk(Pk(x)) . (5)

4 Experiments

Three tip Star: We create 3000 samples in R
4, consisting of two classes par-

titioned in three modes with equal prior arranged on a star in the first two
dimensions (see Fig.1 left), and two dimensions with random Gaussian noise.
The four-dimensional data was then additionally rotated by a random trans-
formation in R

4. For training we take 900 random samples of each class and
three prototypes per class, which are initialized by randomly selected samples.
Training is done for 300 epochs, matrix learning starts after 30 epochs. We
train LVQ schemes with restricted rank 2 matrices and regularization parameter
μ = 0.1. The parameters were chosen due to the experience in other problems
[15, 14] and their sensitivity will be evaluated in forthcoming projects. For the
determination of responsibilities for charting, we set k1 = k/2 = 3.
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Fig. 1: Left: Visualization of the two informative dimensions of the three tip
star data set before adding the 2 noise dimensions and rotation in R

4. Right:
The data projected with a global matrix learned by LVQ.

The classification error of GMLVQ reaches 0.21 (train) resp. 0.19 (test) for a
global matrix, 0.039 (train) resp. 0.037 (test) for local matrices, and 0.45 (train
and test) for LDA, clearly indicating that neither LDA nor global GMLVQ can
capture the regularity of this data set due to its multimodality. GMLVQ with
local matrix adaptation learns the regularity almost perfectly.

For visualization, we use the canonical representation Ω̂ resp. Ω̂k. Visualiza-
tion with local GMLVQ and charting is depicted in Fig. 2. The linear projections
obtained by global GMLVQ are shown in Fig. 1. Obviously, LDA does not pro-
vide a valid projection because of its restriction to one dimension according to
the number of classes, and its restriction to unimodal clusters. Compared to
LDA, linear projection by global GMLVQ provides a better visualization since
it correctly identifies the last two dimensions as irrelevant, and it chooses a
projection which gives a good class separation for two of the six clusters corre-
sponding to a single dominant direction in feature space. The other 4 modes
overlap as can be seen in Fig. 1. Local GMLVQ and charting yields a perfect
visualization of the underlying cluster shapes due to the correct identification of
locally separating class boundaries, see Fig.2. The star is only rotated which can
be a result from the non unique eigenvalues or from the rotation in the original
four-dimensional vector.

Letter: As a second demonstration, we use the letter recognition data set
from the UCI repository [17] consisting of 20.000 data points representing the
26 capital letters in 20 different fonts, digitalized by 16 primitive numerical
attributes. We use 1 prototype per class and matrices restricted to rank 3.
For global matrix learning, we use 500 epochs, initial learning rate 0.1 for the
prototypes, and 0.01 for the matrix parameters. For local matrix learning, we
use 300 epochs and learning rates 0.001 for prototypes and 0.0001 for matrices
see [15] for details.
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Fig. 2: Left: Star data set projected with one of the 6 local transformations
learned from LVQ with local matrix adaptation. Right: Result after charting
the locally projected data. Note, that it resembles to a rotated version of Fig.
1(left).

The classification error on the full data set gives 0.53 for global GMLVQ, 0.13
for local GMLVQ, and 0.295 for LDA. Local GMLVQ improves the accuracy by
more than factor 2 compared to LDA.

The visualization in 3D resulting from these methods (using k1 = 5) is de-
picted in Fig. 3. The classes corresponding to ’M’, ’W’, ’N’, and ’A’ are high-
lighted exemplarily. Local GMLVQ well separates the classes and correctly dis-
plays their mutual closeness; the overall data set is embedded in a manifold
which resembles a saddle and which provides comparably large freedom being a
model of the two dimensional hyperbolic space. Both, GMLVQ and LDA show
a tendency to overlap the classes, and the overall data set resembles a sphere.

5 Conclusions

We have introduced a new discriminative nonlinear visualization technique based
on recent matrix learning schemes for prototype-based classifiers and charting.
Compared to alternatives such as LDA and global matrix learning, the method
showed very promising results in two examples. The overall technique possesses
a couple of benefits: unlike LDA and variants, it provides a nonlinear embedding
of data. Its complexity is linear in the number of examples, thus providing a fast
alternative to quadratic schemes such as kernel LDA. It gives an explicit smooth
embedding function of the data manifold such that out of sample extensions are
immediate. The combination of this visualization technique with a prototype
based learning scheme offers further possibilities to interactively display the data:
prototypes and their embedding in low-dimensions allow to compress the visual
information of modes, which is of particular interest for huge data sets.
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Fig. 3: Different projections of the UCI letter recognition data sets, explicitly
displaying the letters M, N, and W.
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