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Abstract. In this paper we introduce Median Fuzzy C-Means (M-
FCM). This algorithm extends the Median C-Means (MCM) algorithm by
allowing fuzzy values for the cluster assignments.
To evaluate the performance of M-FCM, we compare the results with the
clustering obtained by employing MCM and Median Neural Gas (MNG).

1 Introduction

Clustering of objects is a main task in machine learning. Thereby one can dis-
tinguish between hard and soft variants. For both strategies advanced methods
are developed. Popular approaches favor prototype based adaptive algorithms.
Usually, these algorithms belong to the class of vector quantizers, requiring the
data objects and the prototypes to be embedded in a metric vector space. Recent
designs relax this last condition only demanding the existence of a similarity re-
lation between the data objects given by a data similarity matrix D [1],[2]. Yet,
these approaches are only crisp quantizer.
The aim of this paper is to extend the standard fuzzy c-means (FCM, [3])

algorithm to handle data objects, if only similarities between them are given, i.e.
we propose the median variant of FCM. For this purpose, we demonstrate that
the algorithm follows a gradient descent on a cost function which converges in
a limited number of time steps. Finally, we give examplary applications of the
algorithm for artificial and real world data.

2 The Median Fuzzy c-Means (M-FCM)

First, to derive the M-FCM, we briefly reconsider median c-means, which only
takes the distances d

¡
xj , xi

¢
between the objects itself into account.
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2.1 Median c-means

Median c-means (M-CM) is a variant of classic c-means [1],[3]. The cost function
for M-CM is given by

E =

pX
i=1

nX
j=1

XI(xj)(i) · d
¡
xj , wi

¢
(1)

where p is the cardinality of the set W =
©
wk
ª
of the prototypes and n the

number of data points xi ∈ X = {x1, ..., xn}. XI(xj)(i) is the characteristic
function of the winner index I(xj), which refers to the index of the prototype
with minimum distance to xj (winner).
E is optimized by iteration through the following two adaptation steps until

convergence is reached.

1. determine the winner I(xj) for each data point xj

2. Since for proximity data only the distance matrix is available the new
prototype i has to be chosen from the set X of data points with wi = xl

where

l = argmin
l0

pX
j=1

XI(xj)(l) · d(xj , xl
0
). (2)

2.2 Median Fuzzy c-Means

We now turn to the median fuzzy c-means (M-FCM) which merges M-CM and
FCM. It allows fuzzy assigments of the objects to the cluster prototypes like
in FCM, which are restricted to be objects itself according to M-CM. In the
following, first a general derivation of the algorithm is given and afterwards two
special object metrics - euclidian metric and β-metric - are examined.
The cost function of the M-FCM is exactly that one of the standard FCM:

E =

pX
i=1

nX
j=1

(Ψj(xi))
m
d(xi, wj) (3)

where Ψj(xi) are the fuzzy assignments specified later. The similarity between
the data is given by the matrix D, with Dij = d(xi, xj). The exponent m deter-
mines the fuzzyness and is commonly set to m ≥ 1.5.

There exist two variants of the cost function depending on the fuzzy assign-
ments Ψj(xi):

• probabilistic: Ψj(xi) ≥ 0 with
P
j Ψj(xi) = 1

• possibilistic: Ψj(xi) ≥ 0

We restrict ourself to the probabilistic variant. Starting from a random as-
signment of prototypes the M-FCM algorithm performs a two-step iteration to
minimize the cost function by adapting the prototypes as well as the assigments
Ψ as known from M-CM and FCM:
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1. Ψj(xi) =
m−1√d(xi,wj)−1P
k

m−1√d(xi,wk)−1
2. wj = xl l = argmink[

P
iΨj(xi)

md(xi, xk)]

We have to show that this algorithm follows a gradient descent on (3).
For this purpose, we have to analyze the derivatives showing them to be non-
negative. We utilize the Lagrangian method

L (λ) = E +
X
q

λq(
X
k

Ψk(xq)− 1) (4)

=
nX
i=1

pX
j=1

Ψj(xi)
md(xi, wj) +

nX
i=1

λi(

pX
j=1

Ψj(xi)− 1), (5)

whereby we plugged (3) into (4) for the second line. Using the first derivatives

∂L

∂Ψj(xi)
= mΨj(xi)

m−1d(xi, wj) + λi

= Lj,i

the second derivatives according to the assignments are obtained as

∂Lj,i
∂Ψj0(xi0)

=

½
0 i 6= i0, j 6= j0
m(m− 1)Ψj0(xi0)m−2d(xi0 , wj0) sonst .

and, hence, are non-negative. Looking further at

∂L

∂wj
=

X
i

Ψj(xi)
m ∂d(xi, wj)

∂wj

= Lj

we derive
∂Lj

∂wj0
=

(
0 j 6= j0P

i,j Ψj0(xi)
m ∂2d(xi,wj0 )

∂wj∂wj0
otherwise

. (6)

Since
P
i,j Ψj0(xi)

m is always non-negative, it has to be assured that d(xi, wj)

and ∂2d(xi,wj)
∂wj∂wj0

respectively are positive. Then the convergence follows from gra-
dient descent and the always non-negative cost function.
Usually, the similarity measure d is not known. However, to demonstrate the

flexibility of the algorithm to follow different metrics (although unknown but
implicitely given by the matrix D), we illustrate the approach for two similarity
measures. For the Euclidean metric d(x, y) = ||x − y||2 it is obvious. More
challenging is the second example

d(x, y) = 1− e(−β||x−y||2)
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denoted as β-metric with β > 0 [4]1. The second derivate needed in (6) yields

∂2d(x, y)

∂2y
= e(−β||x−y||

2)((2β(x− y)) + 1) + 2β
≥ 0.

Hence, the β-distance fulfills the above requirements.

3 Experiments

We perform several exemplary experiments to show the abilities of the new M-
FCM. The first experiments are clustering of overlapping Gaussians generating
the distance matrix using the Euclidean metric. Subsequently, we apply the
algorithm to cluster text fragments of dialogs from psychotherapy sessions.

3.1 Measures for comparing results

To measure the agreement of two different cluster solutions, we applied Fuzzy
Cohen’s Kappa κC ∈ [−1, 1] [5]. This measure yields the statement that, if the
result is greater than zero, the cluster agreements are not random but systematic.
The maximum value is perfect agreement [6].

3.2 Overlapping Gaussians

The dataset for the first experiment is created from five overlapping Gaussian
distributions. We used two different settings: in the first setting there is a
substantial overlap whereas for the second run the Gaussians are separated more
clearly. As shown in Fig. 12, a fuzzy cluster assignment reflecting the diffuse
separation of the initial clusters was achieved by M-FCM for both settings.
Additionally, we compare the result with clusterings obtained by FCM. The

comparison is done in terms of the κ -agreement. The κ-agreement between
the fuzzy clusterings of FCM and M-FCM is 0.76209 indicating a substantial
agreement [7].

3.3 Psychotherapy session transcripts

In a real world experiment, we analyze text transcripts of a series of 37 psy-
chotherapy session dialogs from a psychodynamic therapy. It is known that the
therapy was a two-phase process with the culminating point around session 17
[8]. This fact is based on the evaluation of several clinical therapy measures [8].
The similarity between the transcripts is determined using the universal distance
description length (Kolmogorov complexity) estimated by the file length of the
compressed texts, for details see [9].
As shown in [9], algorithms like M-CM and Median Neural Gas (M-NG) find

similar cluster solutions separating the transcripts into two groups reflecting the

1Although it is not a metric in the strong mathematical sense we will denote as metric. To
be a metric one has to put d(x, y) =

p
1− e(−β||x−y||2).

2Colored versions of the images can be obtained from the corresponding author on request.
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Fig. 1: Original Gaussians (left) - moderate overlapping (top) and slightly over-
lapping (bottom). On the right, fuzzy classifications according to M-FCM. The
fuzzy assignment values are color coded. The black stars are the cluster centers.
(The colored figure can be obtained from the corresponding author on request.)

break through in therapy. This concordance led to the hypothesis that narratives
of the psychotherapy can be related to the therapeutic process [8].
Clustering the same data using fuzzy assignments as with M-FCM shows a

smooth transition from phase one to phase two, see Fig.2. However, a more fine
tuned decision can be observed.

4 Conclusion

We developed a median variant of fuzzy c-means which is obtained by a combina-
tion of FCM with classical median c-means. We have shown that the algorithm
follows a gradient descent on a cost function with convergence. Exemplary ap-
plications demonstrate the abilities of the new approach.
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Fig. 2: Transition of psychotherapy sessions from phase 1 to phase 2. The
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