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Abstract. Periodogram smoothing of the received noisy signal is a chal-
lenging problem in speech enhancement. We present a Bayesian approach,
where the instantaneous periodogram is smoothed through an adaptive
smoothing parameter. By updating sufficient statistics using new sam-
ples of the noisy signal, the smoothing parameter is adjusted on-line. The
performance of the novel smoothing algorithm is studied in a speech en-
hancement context. It is demonstrated that with respect to Mean Square
Error, the proposed Bayesian smoothing algorithm performs better than
the other non-Bayesian smoothing algorithms in higher signal-to-noise ra-
tio environments.

1 INTRODUCTION

Periodogram smoothing of the received noisy signal is an important component
of a speech enhancement system. This is relevant for e.g. hearing aids and auto-
matic speech recognition systems. The noise power spectrum is then estimated
using the smoothed periodogram of the noisy signal. The variance of the instan-
taneous periodogram of the noisy signal affects the variance of the estimated
noise power spectrum. Through smoothing, the variance of the instantaneous
periodogram is reduced. In [1], a first order recursive model is used to smooth
the periodogram, with a constant smoothing parameter. One disadvantage of
this method is that it is difficult to keep a good balance between tracking rele-
vant variations of the noisy signal, and at the same time generating a low bias.
Therefore, an adaptive smoothing parameter was proposed by Rainer Martin
and co-workers in [2]. In [2], the smoothing parameter is determined by ex-
tracting information about the current dynamic regime from the previous noise
power spectrum estimate. This requires additional assumptions on the signal
and induces a time delay to the tracking method.

In this paper, we present a Bayesian algorithm for instantaneous periodogram
smoothing in speech enhancement systems. The paper is organized as follows.
In Section 2, we explain the Bayesian periodogram smoothing model, with a
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time-frequency dependent smoothing parameter. A forgetting factor and an al-
ternative probability are introduced to express the prior probability over model
parameters. An updating algorithm for the alternative prior probability is ex-
plained. In Section 3, we list the results by applying the proposed algorithm and
a reference algorithm to synthetic data. The periodogram smoothing experiment
results are shown in Section 4 and Section 5 presents our conclusions.

2 BAYESIAN PERIODOGRAM SMOOTHING

We represent a sampled noisy signal as x(m) , where m is the sample index.
X(k, l) is the short-time Fourier transform (STFT) of x(m), with k ∈ 1, 2, ...,K
the frequency subband index, and l ∈ 1, 2, ..., L the time frame index. The
instantaneous periodogram P ′

X [dB] of the noisy signal is given as:

P ′
X(k, l) = 20 log10 |X(k, l)| (1)

2.1 Periodogram smoothing model

The periodogram smoothing of P ′
X is given by a first order recursion, using a

time-frequency dependent smoothing parameter.

PX(k, l) = [1− αX(k, l + 1)]PX(k, l − 1) + αX(k, l + 1)P ′
X(k, l) (2)

with PX [dB] the smoothed output and αX(k, l+1) the time-varying frequency-
dependent smoothing parameter, with range [0,1]. For lucidity, PX(k, l) will be
represented by Pl. In this way, eqn. (2) can be rewritten as:

Pl = Pl−1 + αl+1(P ′
l − Pl−1) (3)

In eqn. (3), when αl+1 is set to be 0, Pl will be the same as the previous smoothed
output Pl−1. The variance of the instantaneous periodogram is reduced, but the
variations of the instantaneous periodogram will not be tracked. When αl+1 = 1,
Pl will be the same as the instantaneous periodogram P ′

l . The variations of
the instantaneous periodogram are tracked reliably. However, the instantaneous
periodogram is not smoothed. Therefore, by adjusting the smoothing parameter,
we change the degree of smoothing and tracking variations of the smoothed
periodogram.

We define σl+1el+1 as the prediction error, which is the difference between
the instantaneous periodogram P ′

l+1 and the smoothed output Pl, and assume
el+1 ∼ N (0, 1). N (0, 1) is a Gaussian distribution, with mean 0 and variance 1.
The instantaneous spectrum P ′

l+1 can then be expressed by the smoothed power
spectrum Pl as follows:

P ′
l+1 = Pl + σl+1el+1 (4)

From eqn. (3) and eqn. (4), P ′
l+1 can be given as:

P ′
l+1 = Pl−1 + αl+1(P ′

l − Pl−1) + σl+1el+1 (5)

For simplicity, precision ωl+1 is rewritten as (σ2
l+1)

−1.
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2.2 Bayesian modelling

By rewriting eqn. (3) and eqn. (4) to eqn. (5), we can write down the
(normal) likelihood over P ′

l+1, given model parameters αl+1 and ωl+1. Let
A = [−1, 1, al+1]T and B = [P ′

l+1, Pl−1, P
′
l − Pl−1]T . The likelihood is given

as:

p(P ′
l+1|αl+1, ωl+1, P

′
l ) ≡N (Pl−1 + αl+1(P ′

l − Pl−1), ω−1
l+1)

=(2π)−0.5ω0.5
l+1 exp{−1

2
ωl+1A

T BBT A}
(6)

The observations of the model, expressed by eqn. (4), are shown by the shaded
circles in figure 1. Given the estimated model parameters, the smoothed output
(which is shown in the second layer from the bottom in figure 1) is given by eqn.
(3). The previous estimate of the posterior mean of Pl−1 is now considered as a
pseudo-observation [3].

Regarding the likelihood eqn. (6), we choose a Normal-Gamma (NG) distri-
bution as the (conjugate) prior distribution for the joint probability of the model
parameters αl+1 and ωl+1 [4], with sufficient statistics Vl+1, νl+1. We rewrite
the unknown model parameters αl+1 and ωl+1 as θl+1 with θl+1 = [αl+1, ωl+1]T .
This is shown by the third layer from below in figure 1.

Fig. 1: Graphical model for Bayesian periodogram smoothing. Shaded circles
represent observations. Dotted circles represent the pseudo-observations.

In nonstationary environments, the model parameters will change, but their
evolution model is not known. Therefore, we adopt the approach in [5][6][7],
where a time-varying forgetting factor φl+1 and an ’alternative’ fall-back dis-
tribution p̃ [5] are introduced to model the prior probability over the model
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parameters from p(θl) to p(θl+1). Ṽ and ν̃ are sufficient statistics of the alter-
native distribution, see the top layer in figure 1. The forgetting factor expresses
the degree to which the model parameters for the next time frame are similar
to the previous model parameters. If the environment is stationary, the forget-
ting factor φl+1 is almost 1. Then next time model parameters are similar to
the previous model parameters. If the environment rapidly changes, φl+1 will
be approximating 0. The alternative prior will then determine the next model
parameters.

We use variational Bayes Expectation Maximization (VEM) to estimate the
model parameters, in the same spirit as [5]. Details of our on-line Bayesian
algorithm can be found in a technical report [8].

2.3 Updating the Alternative Prior Probability

The alternative prior distribution p̃(θl+1|Pl) is chosen to have the same form
as p(θl|P′

l) [8]. Ṽl+1 is chosen as a combination of Vl and V0 with coefficient
β, see eqn. (7). Therefore, the alternative distribution takes into account both
the model parameter estimated from the previous observations and the new
initialization. In contrast, in [5] the alternative prior is a fixed matrix V0.

Ṽl+1 = βVl + (1− β)V0 (7)

If β = 1, Vl from the previous time frame acts as the alternative prior.
Therefore, model parameter α is assumed to be stationary.

If β = 0, the alternative prior is the same as initialization value V0, and we
obtain the Smidl algorithm. In this case, new exploration is included in the
estimation of the (nonstationary) model parameter α.

3 SYNTHETIC DATA EXPERIMENTS

We apply the proposed alternative prior probability algorithm to a univariate
second-order AR model, similar to the example in section 5.4 in [5]. The noisy
speech signal is the sum of a clean speech signal and an uncorrelated additive
white noise. Figure 2, left subfigure, shows the average square root of the mean
square error (sqrt(MSE)) over 100 realizations of the AR process, with different
updating coefficient β. The average square root of the MSE of our alternative
prior updating algorithm is smaller than that of the original Smidl algorithm for
β 6= 0. An analysis based on a 99% confidence interval on the mean difference
between the methods corroborated that the performance improvement of prior
updating over Smidl’s original method is significant for β 6= 0 [8].

4 PERIODOGRAM SMOOTHING EXPERIMENTS

We implemented the previously discussed smoothing algorithms in a speech en-
hancement system. In this section, we compare performance of Bayesian peri-
odogram smoothing algorithm with the adaptive step size Least Mean Square
(ASLMS) algorithm [8], and Martin’s algorithm.
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The speech utterances are taken from the database TIMIT [9]. Noise signals
are taken from database Noisex92 [10]. The input SNR at which speech and noise
are mixed is varying from -6 dB to 26 dB with step size 2 dB. For each time step of
the variational Bayes EM algorithm, the forgetting factor is initialized to φ = 0.7.
We use 3 VEM iterations per time step, to ensure real-time performance.

Fig. 2: Left subfigure: Assessing the effect of updating the alternative prior
based on the Average Square Root of the MSE. The red dotted line (’Smidl’)
is obtained without prior updating. The blue solid line (’Xueru’) is obtained
with our alternative prior updating algorithm. Vertical bars represent standard
deviations of the MSE. The horizontal axis displays the updating coefficient β.
Right subfigure: Assessing our Bayesian periodogram smoother based on MSE.
The horizontal axis displays input SNRs. The magenta dash dotted line repre-
sents the MSE based on ASLMS smoothing. The red solid line with circle marker
is from the spectrum estimator of a reference (’original’) speech enhancement
system, with a fixed smoothing parameter. The blue solid line represents our
Bayesian periodogram smoothing algorithm with β 6= 0. The red dotted line is
our proposed Bayesian algorithm with β = 0. The black dashed line is Martin’s
smoothing algorithm.

We define MSE1 as the mean square error between Pl and P ′
l+1. In figure

2, right subfigure, we show the MSE for different periodogram smoothing al-
gorithms. We see that smoothing based on Martin’s method and our Bayesian
method gives better performance than ASLMS and the periodogram estimator
of the reference (’original’) system. The performance of the ASLMS algorithm
depends on a meta-parameter ρ for the step size. In our opinion, the slow con-
vergence speed of ASLMS results in bigger MSE at several points. The system
has not converged to the optimum values at the high MSE points around SNR
= 4, 12, 14, 16, 22 and 24 dB. However, when it did converge (e.g. at SNR
-6, -2, 0, 6, 8, 20, 26), we get a performance slightly better than ’original’ for

1We use MSE to evaluate the performance of the approaches, because we address the task
of smoothing in a statistically optimal way, instead of measuring the performance in terms of
an index relevant for speech enhancement. However, the results indicate that better spectrum
estimation maybe achieved, which could be exploited in speech enhancement applications.
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SNRs below 5 dB, and slightly worse for higher SNRs. Martin’s algorithm gives
better performance than our Bayesian algorithm at lower input SNR. However,
if the input SNR is higher, Bayesian smoothing algorithm gives lower MSE than
Martin’s algorithm. We think that for higher SNR, speech plays an important
role in the periodogram smoothing and the Bayesian smoothing algorithm keeps
better track of the nonstationary variations in the original speech signal. The
tracking ability of our Bayesian periodogram smoother does not seem to benefit
from updating the alternative prior, since the performance for β = 0 (referred
to as ’Smidl’) is almost indistinguishable from the performance for β = 0.1.

5 CONCLUSION

In this paper, we proposed a novel Bayesian algorithm for tracking of the smooth-
ing parameter to reliably estimate a signal spectrum from the periodogram. The
smoothing parameter is on-line updated for each time frame and frequency sub-
band. Our Bayesian periodogram smoothing method yields an improved track-
ing ability at higher input SNRs. Our novel prior updating scheme allows for
improved tracking performance with data from an AR(2) model.

Possible future improvements could be adjusting the coefficient for the alter-
native prior updating algorithm rather than using a fixed value. One way may
be to adjust the β coefficient based on the tracking error, along the line of the
Martin smoother. Through adjusting the coefficient, our Bayesian smoothing
algorithm could be improved in stationary environments.
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