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Abstract. This paper proposes a method using labelled data to learn a
decision rule for multiclass problems with class-selective rejection and per-
formance constraints. The method is based on class-conditional density
estimations obtained by using the Gaussian Mixture Models (GMM). The
rule is thus determined by plugging these estimations in the statistical hy-
pothesis framework and solving an optimization problem. Two simulations
are then carried out to corroborate the efficiency of the proposed method.
Experimental results show that it compares well with a non-parametric
solution using Parzen estimator.

1 Introduction
Classification of an unknown pattern into one of a finite number of known classes
is a well-known problem in many fields of science and engineering. Generally, a
classification system is designed to optimize a given loss function, for instance
the error rate. For some cases, the loss function should be more general. First,
some applications, like face identification, may favor withholding decision than
taking a wrong one. Consequently, the introduction of rejection options should
be considered. In other words, a pattern can be rejected from one, some or all
classes in order to ensure a higher reliability. In this class-selective rejection
scheme, the loss function penalizes differently the wrong decisions and partially
correct ones. Second, these applications may require to satisfy some constraints.
Hence, the loss function should also take into account these constraints. A
general formulation for this problem was proposed in [1, 2] and the optimal
decision rule was given in the framework of decision theory. To learn a classifier
for such problems, one approach consists of using labelled data and determining
the optimal decision rule with the estimated conditional probability densities
instead of the theoretical ones.

In the past decades, mixture models were applied as an expressive class of
models for density estimation. In particular, Gaussian Mixture Models (GMM)
were used as effective models with high identification accuracy. The most pop-
ular algorithm to learn mixture models is the Expectation-Maximization (EM)
algorithm [3]. Starting from a random configuration, many learning GMM meth-
ods estimate parameters in order to optimize a ”goodness of fit” criterion such as
the likelihood [4, 5, 6, 7]. The greedy EM algorithm [6] is used in this manuscript
due to its insensitivity to the initialization step, its growing nature useful when
the number of mixing components is unknown and its ability to find the opti-
mal likelihood maximum. The class-conditional probabilities, estimated using
GMM are plugged into the hypothesis tests to determine a supervised decision
rule. Moreover, GMM results are compared with a non-parametric solution using
Parzen windows estimator [8] in order to asses the efficiency of both methods.

This paper is outlined as follows. Section 2 describes the multiclass decision
problems with performance constraints. A brief description of greedy EM is given
in section 3. Section 4 presents the proposed training and quality assessment
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algorithms. GMM based method is compared to the Parzen windows estimators
based method using two simulated examples in section 5. Finally, a conclusion
and perspectives are given in section 6.

2 Multiclass decision problem
Assuming that a classification problem is characterized by N classes w1... wN

and that any observation x ∈ <d belongs to one class, a decision rule consists
of a partition Z of <d in I sets Zi composed of elements x assigned to the
decision option ψi. In the class-selective rejection scheme, options are defined
by an admissible class or a subset of classes (i.e. x ∈ ψi = {1; 3} means that x
is assigned to w1 and w3 with ambiguity). The probability that elements of wj

are assigned to ψi is:

P (Di/wj) =

∫

Zi

P (x/wj)dx.

The problem consists of finding the decision rule Z∗ that minimizes a given loss
c(Z) and respects K given constraints respectively defined by:

c(Z) =

I∑

i=1

N∑

j=1

ci,jPjP (Di/wj) and e(k) =

I∑

i=1

N∑

j=1

α
(k)
i,j PjP (Di/wj) ≤ γ(k)

γk are thresholds, ci,j and α
(k)
i,j ∈ < are the costs of deciding that an element

x belongs to the set ψi when it belongs to the class wj , in the expressions of
the loss and the constraints respectively. Pj are the a priori probabilities. The
optimal decision rule Z∗ is the solution of the following problem:

min
Z

c(Z) subject to e(k)(Z) ≤ γ(k) ∀k = 1, ...,K.

This problem may be defined as an optimization problem with constraints. Its
solution can be obtained by using the LagrangianL(Z,µ) = c(Z)+

∑K

k=1 µk(e(k)−

γ(k)) where µ is the vector of the Lagrange multipliers µk ≥ 0, k = 1, ...,K as-
sociated to the constraints. The determination of the solution in the statistical
decision theory was expounded in [2]. It consists of finding the saddle point
(Z∗,µ∗) of L(Z,µ) by solving:

max
µ∈<K+

{min
Z

L(Z,µ)} (1)

The optimal decision rule is defined by the partitions Z∗
i (µ∗) for i = 1, ..., I

where Zi(µ) is given by the set {x/λi(x,µ) < λl(x,µ), l = 1, ..., I, l 6= i} and

λi(x,µ) =
∑N

j=1 PjP (x/wj)
(
ci,j + µ

Tαi,j

)
.

3 Gaussian Mixture Models
The GMM are investigated to design a supervised decision rule by using the
estimates of the conditional probability functions. The GMM are given by

P̂T (x/w) =
∑T

t=1 πtφ(x/w; θt) where the t-th gaussian component of a given
class w, φ(x/w; θt), is the d-dimensional gaussian density parameterized by
θt = {mt, St}:

φ(x/w; θt) = (2π)
−d

2 | S |
−1

2 exp[−0.5(x−mt)
TS−1

t (x−mt)]

T is the number of components for the modelization of class w, πt is the mixing
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weight satisfying
∑T

t=1 πt = 1 and πt ≥ 0, mt is the mean and St is the covari-
ance matrix of the t-th component. Given a set {x1, ..., xn} drawn from w, the
task is to estimate the parameters πt,mt, St and the number T of components
that maximize the log-likelihood LT =

∑n

p=1 log P̂T (xp/w). The log-likelihood
maximization can be carried out by the greedy EM algorithm based on the the-
oretical results of [9]. In this latter, Li and Barron show that the difference
in Kullback-Leibler divergence achievable by T -component mixtures and the
Kullback-Leibler distance achievable by any (possibly non-finite) mixture from
the same family of components tends to zero with the rate c/T with c a constant
dependant from the component family. Furthermore, this bound is reachable by
employing the greedy procedure. Therefore, the maximum likelihood of the mix-
ture can be determined by adding iteratively a new component to the mixture.
In this work, the greedy EM [6, 7] algorithm for learning GMM is used since
it is able to find the global likelihood maximum and to estimate the unknown
number of the mixture components. This algorithm can be summarized as fol-
lows. Starting from a 1-component mixture (T = 1), the optimal parameters are
obtained by an EM procedure until convergence(| Literation −Literation−1 |≤ ε).
Then, a search for a new component φ(x/w; θ∗) location and a corresponding
weight a∗ is performed in order to maximize the new log-likelihood:

LT+1 =

n∑

p=1

log P̂T+1(xp/w) =

n∑

p=1

log[(1 − a)P̂T (xp/w) + aφ(xp/w; θ)] (2)

with P̂T remaining fixed. It is obvious that the crucial step of this algorithm is
the search of a new component location. It can be shown that LT+1 is concave
as function of a but can have multiple maxima as function of θ. Hence, a global
search is required. One way pointed in [7] proposes to use all the points as initial
candidates of the sought component. Every point is the mean of a corresponding
candidate with the same covariance matrix σ2I , where σ is set according to [10].
For each candidate component, a is set to the mixing weight maximizing the
second order Taylor approximation of LT+1 around a = 0.5. The candidate

yielding to the highest log-likelihood when added to P̂T in (2) is selected and
updated using partial EM until convergence. The new component is added to
P̂T and the research is repeated until reaching the maximum likelihood on a
validation set. An improved version of this global search [6] is used in this work.
At each iteration, it selects the best component from a set of candidates whose
size increases linearly with T yielding to better and faster performances.

4 Supervised learning and quality assessment of the rule
In the statistical decision theory framework, the determination of a multiclass
rule that satisfies performance constraints consists of finding the optimal Z∗ and
the optimal Lagrange multipliers µ

∗ by solving the optimization problem invoked
in (1) [1, 2]. However, in the supervised learning framework, Pj and P (Di/wj)
are unknown. One strategy to learn a supervised classifier is to estimate these
probability density functions and determine the corresponding optimal super-

vised rule Ẑ∗ and estimated Lagrange multipliers µ̂∗. In this paper, we study
the repercussion due to the estimation of P (x/wj) and we consider that Pj is
known. Two estimators, Parzen windows method [8], with a smoothness pa-
rameter h, and GMM fitting are used. The probability estimates depend on
the labelled set and on the density estimators parameters, h of Parzen and T of
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the GMM. These parameters are determined by maximizing the log-likelihood
of a validation set using 10-Cross Validation. Supervised rules obtained by using
these estimations are then compared.

To assess the quality of the supervised rules obtained using the two density

estimators, the Lagrangian of the supervised rules Ẑ∗ should be estimated on a
test set as a comparison criterion. The validity and the relevance of this criterion
were experimentally shown in [11]. Since the aim of this work is to study the
GMM and Parzen estimators ability learning a decision rule, it is important to

compare different rules Ẑ∗ with comparable criterions computed with a unique
estimator of P (x/wj) and the same value of µ̂∗. In this paper, criterions will be
computed on an infinite test set (theoretical densities) with theoretical Lagrange
multipliers (those associated with the theoretical rule) in order to get the the-
oretical performance of the rule. The learning-testing procedures of the GMM
and Parzen windows estimator algorithm are as follow:

1. For each class wj , estimating the GMM or the Parzen windows distribu-

tions P̂ (x/wj) using a training set and a validation set.

2. Learning the decision rule by solving the optimization problem (1) with

the estimated P̂ (x/wj), namely, finding the optimal supervised rule Ẑ∗

and the optimal µ̂∗.

3. Quality assessment of the rule: computing the Lagrangian L̂(Ẑ∗,µ∗) of

the supervised rule Ẑ∗ on an infinite test set using theoretical µ
∗.

5 Simulation results and discussions
To evaluate the performances of the supervised learning approaches, two 2-D
problems with three equiprobable classes and performance constraints were con-
sidered. For both problems, GMM and Parzen estimators were used. Synthetic
data and experimental results are presented and compared below.

5.1 Toy problems

The first problem is defined by three classes, each one is a 3-gaussian compo-
nent distribution with unbalanced weights, leading to a trimodal distribution.
The aims of this experiment is first to study the case where the distributions
correspond to the hypothesis of GMM and second to asses the Parzen estimator
ability fitting multimodal distributions. The second problem is given by three
bivariate gamma distributions in order to study the case where the hypothesis
of GMM is not fulfilled by data distributions. The corresponding theoretical
densities were represented using isodensity curves in figures 1.a and 2.a.

For both problems, the possible decision options are given by: ψ1 = {1},
ψ2 = {2}, ψ3 = {3}, ψ4 = {1, 2}, ψ5 = {1; 3}, ψ6 = {2; 3} and ψ7 = {1; 2; 3}.
The constraints are defined by PE ≤ 0.05 and PI ≤ 0.1 for the first problem and
PE ≤ 0.1 and PI ≤ 0.15 for the second one. PE is the probability of error and PI

is the probability of indistinctness, namely, the probability to assign a pattern x
of wj to a subset of classes ψi that contains more than one class of which one is

wj . The Lagrangian is defined by L(Z,µ) = PE+0.5PI+P (D7)+
∑K

k=1 µk(e(k)−

γ(k)) where P (D7) corresponds to no decision. Theoretical decision rules are
given by the partitions reported in figures 1.a and 2.a.

For both experiments, the learning-testing algorithm described above was
carried out on three groups of 40, 20 and 10 learning sets of 50, 100 and 200
observations per class respectively.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10PSfrag replacements

{1}

{2}

{3}

{1,2}

{1,2}

{1,2}

{1,3}

{1,3}

{2,3}

{1,2,3}

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

PSfrag replacements

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

{1,2,3}

{1}

{1}

{1}

{2}

{3}

{1,2}

{1,2}

{1,3}

{1,3}

{2,3}{1,2,3}

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

PSfrag replacements

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

{1,2,3}

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

{1,2,3}
{1}

{1}

{1} {2}

{3}

{3}

{1,2}

{1,2}

{1,2}

{1,3}

{1,3}

{1,3}
{2,3}

{1,2,3}

Fig. 1: 3-gaussian component problem: density probabilities and the correspond-
ing partition. From left to right: Theoretical case (1.a) and an example of
estimators in the case of Parzen (1.b) and GMM (1.c)
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Fig. 2: Bivariate gamma problem: density probabilities and the corresponding
partition. From left to right: Theoretical case (2.a) and an example of estimators
in the case of Parzen (2.b) and GMM (2.c)

5.2 Experimental results and discussions

For both problems, PE , PI , c(Z
∗) and L(Z∗,µ∗) were computed for the optimal

rule. Besides, their estimated values P̂E , P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗) were com-
puted on supervised partitions using an infinite test set and the theoretical µ

∗.
The mean and the standard deviations are reported in tables 1 and 2. An exam-
ple of optimal rules built with GMM and Parzen densities are shown in figures
1.b and 1.c (for the 3-gaussian component distribution problem) and 2.b and 2.c
(for the gamma distribution problem). They are obtained using the density esti-
mated on a set with 200 observations per class. Results show that decision rules
built with GMM and Parzen estimates are relevant. Their accuracy increases as
long as the learning set size increases. Furthermore, GMM can be considered as
a good family of non-symmetrical density estimators. They achieve results supe-
rior to Parzen estimators in term of losses, especially when the learning set size
decreases. These results can be explained by several reasons: (i) Parzen estima-
tors converge asymptotically to the real densities. (ii) Parzen density estimates
are sums of as many local windows as the size of learning set, while the GMM
estimates are compact functions parameterized according to a global search over
all the learning set. Thus, the local nature of the Parzen estimator can lead to
overfitting. Moreover, for the first problem, the errors, as the function of the
number of observations of the GMM, decrease faster than those of Parzen. It
is a logic result since the distributions correspond to the GMM hypothesis and
GMM are more accurate fitting a multimodal distribution.

6 Conclusion
A decision rule learning method for multiclass problems with class-selective
rejection and performance constraints is proposed. First, the optimal class-
conditional density estimations are selected by maximizing the likelihood. Sec-
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GMM Parzen Theo.
50 obs 100 obs 200 obs 50 obs 100 obs 200 obs

P̂E 0.084 ± 0.023 0.060 ± 0.011 0.053 ± 0.006 0.033 ± 0.015 0.034 ± 0.010 0.030 ± 0.008 0.050

P̂I 0.082 ± 0.027 0.094 ± 0.016 0.098 ± 0.006 0.090 ± 0.011 0.087 ± 0.008 0.085 ± 0.006 0.100

ĉ 0.161±0.040 0.133±0.017 0.136±0.018 0.248±0.039 0.212±0.028 0.207±0.029 0.131

L̂ 0.205±0.033 0.147±0.012 0.140±0.011 0.224±0.024 0.189±0.015 0.177±0.017 0.132

Table 1: Values of the theoretical and estimated P̂E , P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗)
using GMM and Parzen estimators for the 3-gaussian component problem

GMM Parzen Theo.
50 obs 100 obs 200 obs 50 obs 100 obs 200 obs

P̂E 0.114 ± 0.021 0.110 ± 0.010 0.109 ± 0.008 0.083 ± 0.028 0.079 ± 0.018 0.086 ± 0.010 0.100

P̂I 0.143 ± 0.023 0.143 ± 0.011 0.143 ± 0.012 0.147 ± 0.019 0.148 ± 0.012 0.147 ± 0.010 0.150

ĉ 0.235 ± 0.022 0.239 ± 0.012 0.234 ± 0.009 0.304 ± 0.044 0.290 ± 0.030 0.268 ± 0.016 0.229

L̂ 0.251 ± 0.021 0.249 ± 0.008 0.247 ± 0.006 0.280 ± 0.025 0.260 ± 0.010 0.248 ± 0.003 0.229

Table 2: Values of the theoretical and estimated P̂E , P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗)
using GMM and Parzen estimators for the gamma distributions problem

ond, the supervised rule, associated to the optimal estimates, is selected by
optimizing the Lagrangian. GMM fitting and Parzen windows are used as den-
sity estimators. Supervised rules obtained by these two estimators are compared.
Simulations on two synthetic problems were carried out. Results show that for
some complex distributions like trimodal distributions, GMM fitting can be a
good model yielding to an accurate decision rule. Moreover, GMM algorithm
can be efficient, accurate and considerably fast-easy way to predict decision rules
for a wide variety of statistical distributions. Outgoing work may tackle multi-
class problems with evolutionary constraints. Varying constraints in the context
of this method leads only to re-optimize µ. Thus, this flexible aspect allows to
handle problems with continuous or discrete time sequences of constraints.

References

[1] E. Grall, P. Beauseroy and A. Bounsiar, Multilabel classification rule with performance
constraints. In proceedings of IEEE conference ICASSP’06, France, 2006.

[2] E. Grall and P. Beauseroy, Optimal Decision Rule with Class-Selective Rejection and Per-
formance Constraints, To appear in IEEE Transactions on Pattern Analysis and Machine
Intelligence.

[3] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum Likelihood from Incomplete Data
via the EM Algorithm, J. Roy. Statist, 39:1-38, 1977.

[4] R. Nakano, Z. Ghahramani, G.E. Hinton and N. Ueda, SMEM Algorithm for Mixture
Models, Neural Computation, 12:2109–2128, 2000.

[5] M.A.T Figueiredo and A.K. Jain, Unsupervised learning of finite mixture models, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24:381–396, 2002.
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