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Abstract. Recurrent neural networks (RNNs) carry the promise of
implementing efficient and biologically plausible signal processing. They
both are optimally suited for a wide area of applications when dealing
with spatiotemporal data or causalities and provide explanation of cog-
nitive phenomena of the human brain. Recently, a few new fundamental
paradigms connected to RNNs have been developed which allow insights
into their potential for information processing. They also pave the way
towards new efficient training algorithms which overcome the well-known
problem of long-term dependencies. This tutorial gives an overview of this
recent developments in efficient, biologically plausible recurrent informa-
tion processing.

1 Introduction

Recurrent neural networks (RNNs), in particular Hopfield networks, were among
the models which led to a renaissance of neural network research in the 90th af-
ter the rapid decrease of interest in neural network research caused by the exact
mathematical proof of the limitations of the simple perceptron and extensions
thereof by Minsky and Papert in the 70th. Convincing properties of the Hopfield
model model include biological plausibility as associative memory, exact mathe-
matical treatment of the capacities and dynamics in terms of an underlying cost
function and associated stable states, and the possibility to apply the model to
classical problems, such as the traveling salesperson problem.

Since then, a variety of very different recurrent neural networks with differ-
ent dynamics and application areas has emerged. The models include partially
recurrent systems such as discrete and continuous time models for time series
prediction, simulation of dynamical systems, and processing of language. Fully
recurrent models such as Boltzmann machines and associative memories, mod-
els involving only local or restricted recurrence such as long short term memory
networks or locally recurrent, globally feedforward networks, recurrent models
which resemble classical filters, or recurrent systems aimed for an explanation of
biological recurrent networks such as the neocortex have also been developed.

When investigating these models, the key issues remain widely the same: the
biological plausibility of recurrent systems and their connected dynamic phe-
nomena, the exact mathematical characterization of the network dynamics, and
applicability to relevant problems. While the mathematical treatment of recur-
rent networks of various form has reached a matured state in some respects, the
applicability to classical problems and training of recurrent networks still faces
severe problems. Practitioners therefore often prefer a simple feedforward mod-
eling over the in theory much more powerful recurrent treatment of problems
involving temporal or spatial dependencies.
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We will argue in this overview that new developments in the context of re-
current models, in particular a matured characterization of stability of recurrent
systems, new biologically plausible training modes, and network models such as
reservoir computing have lead to a state of the art where these problems may
be overcome.

2 Applications

One of the most general formulations of the dynamics of recurrent networks is
given by the simple formula

y(t+1) = f(at),y(t),0(t), ot +1)=g(y(t))

in discrete time or
ny(xvyvo)v ONg(y)

in continuous time with inputs x, hidden states y, outputs o, and nonlinear
activation functions f and g. These formulas can be used to model different
dynamics: on the one hand the most common usage of RNNs is short or long
term prediction of time series, when only a fixed time horizon is predicted based
on given inputs and an initial state. On the other hand, they model also ap-
proximation of global fixed points when the system is driven up to convergence
based on a given initial state or, more generally, generation of patterns when the
system is driven towards an autonomously generated periodic, quasi-periodic, or
more complex (possibly chaotic) attractor.

Correspondingly, recent applications of recurrent networks can be found in a
variety of different areas. One of the classical application scenarios of RNNs is
the prediction of time series and classification of temporal patterns [16, 47] such
as the prediction of the stock market [68], of electricity load [10], the modeling of
natural phenomena such as sandbars or wind speed [100, 6, 5], the classification of
birdsongs [59], speech or speaker recognition [60, 34], event detection in robotics
[2], or the modeling of speech and grammar [18, 32]. When a RNN is put into a
loop with the system nonlinear control can be achieved. This is one of the most
popular application areas of RNNs, accompanied by a vast literature concerning
control designs which fulfill certain important properties such as stability or
optimality [83, 76, 104, 46, 155, 130, 128]. Applications in this context reach
from the control of industrial and technical systems [110, 104, 62] up to robotics
[154, 53]. When referring to stable states of RNNs or their long term dynamics in
the form of associative memories, RNNs can be used to solve complex dynamic
tasks such as classical problems including the traveling salesperson problem [134,
125], Boolean factor analysis [33], or object segmentation in images [90, 144].
Further, RNNs can be used to directly model biological counterparts such as
biological networks; successful inference of gene regulatory networks by means
of RNNs has been presented e.g. in [70, 149].

3 Cost function optimization

The original Hopfield network uses the RNN dynamics to retrieve stable states
associated to initial conditions of a given network the their respective basins of
attraction. One of the achievements of Hopfield was the explicit formulation of a
corresponding cost function which is optimized by the network dynamics. This
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principle lies behind a variety of general design rules of RNNs to solve complex
dynamical tasks. One of the early applications which are still investigated is
given by solutions for the traveling salesperson problem [134, 125]. More gen-
eral approaches design RNNs to solve general linear or quadratic optimization
problems [50, 4, 23, 79, 80, 82] possibly with constraints [36, 146] which can be
used e.g. for the distributed training of support vector machines [105]. Counter-
parts in continuous space concern various variational problems (linear /nonlinear,
possibly with constraints) [147, 49, 145, 48]. Due to its biological plausibility,
another very popular function designed by means of fully recurrent RNNs is the
winner takes all function and generalizations thereof such as the k-WTA func-
tion, as investigated e.g. in [81, 15, 115]. Apart from applications e.g. for the
rapid parallel retrieval of data from huge databases, these models are relevant
to explain parts of the functionality of biological systems.

4 Stability

The attractors of an associative memory are the stable states of the underlying
dynamics. The notion of stability, however, concerns a much richer mathemat-
ical terrain, as pioneered e.g. in the approaches [131, 128] for RNNs. While
stable states or stable attractors constitute the essential solutions of associa-
tive memories and RNNs used for optimization purpose, stability constitutes a
key property for RNNs used for control tasks. Thereby, different mathematical
notions of stability exist, often global exponential stability (as strongest and,
therefore, most desirable property) is proved, but weaker conditions are also
investigated, including new notions of stability such as e.g. investigated in [22].

Much research has been done to find easy to test conditions for stability of
RNNs with adaptive parameters (weights and delays) and different activation
functions (assuming additional properties such as boundedness or differentiabil-
ity, if necessary). Often, standard techniques from stability theory are applied
such as Lyapunov functions, and, mostly, conditions in the form of linear matrix
inequalities are derived, which can be tested in practice, see e.g. the articles
[160, 121, 111, 126, 161, 156, 86, 123, 21, 78, 77, 1, 103, 158, 84, 157, 17, 73, 75,
130, 128] for stability properties under different conditions. Some approaches
deal with the stabilization of RNNs [103, 122] e.g. by inducing appropriate noise
into the system. Moreover, apart from stability conditions, analysis of the num-
ber of stable states or periodic attractors and the corresponding basins of attrac-
tion is of interest [86, 148, 74]. This knowledge is very relevant to design reliable
learning algorithms for fully recurrent networks acting as associative memory,
on the one hand, and RNNs used for control, on the other hand. Further, the
dynamic properties of RNNs as manifested in their stable states are of relevance
to fully understand RNNs which model biological systems.

5 Mathematical analysis

Closely related to stability analysis is the analysis of the dynamics of RNNs.
This extends classical stability analysis e.g. considering conditions for multi-
periodicity [162, 159] and an exact investigation of the dynamical properties of
RNNs under different conditions. It is well known that the full spectrum of
dynamic behavior can be observed already in very small networks. While small
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systems (e.g. three neurons) can still be analyzed analytically [35, 9, 44], the sit-
uation becomes more and more complex for larger networks. Correspondingly,
approximations [72] or a more global analysis become necessary. For large (ran-
dom) models, the effect of the network topology on important properties can
provide such measurement [106], e.g. the ability of random networks to solve
benchmark pattern recognition tasks [31], the effect of the topology on the syn-
chronizability of such systems [19], or the capacity of such systems depending on
topology and form of neurons [69, 138]. The approach [40] successfully derives
a mapping of meta-parameters of RNNs derived similar to Google’s PageRank
to the resulting dynamics.

These findings are interesting for the design of training algorithms or the
design of network blocks which can act e.g. as pattern generator. Further, when
investigating biologically plausible models such as e.g. linear threshold circuits
[133] or spiking networks [3], the findings can help to correctly interpret the
function of biological systems. Very interesting results have also been found in
the frame of language learning, where the state space reveals insights into the
underlying recursive process [20, 135].

6 Biologically inspired models

The mathematical analysis of RNNs serves different purposes: on the one hand,
it helps to design efficient training algorithms, on the other hand, it allows in-
sight into the principles underlying RNNs. Thereby, the design and analysis
of models which mirror important properties of biological systems is of par-
ticular relevance to the understanding of biological RNNs and, eventually, the
mechanisms underlying the human brain. Research which investigates biologi-
cal aspects of RNNs can be classified into different categories: Some approaches
model biologically plausible RNNs at a very abstract level and try to understand
fundamental properties of such network architectures. As an example, the ap-
proach [36] models large random RNNs and investigates synchronization in such
systems, since synchronization can frequently be observed in biological systems
and it might play an important role in information coding. Similarly, the article
[66] investigates correlations which occur in large networks. The approach [96]
also deals with the encoding of temporal stimuli in biologically plausible RNNs.
Biologically relevant networks architectures including RNNs with lateral inhibi-
tion, circuits of leaky integrate and fire neurons, and systems of spiking neurons
are investigated in [89, 114, 92, 67|, and relevant properties such as mean firing
rate and dynamical characteristics are systematically described. Further, some
work deals with simplified descriptions and models such as e.g. [102], which
presents a general possibility to substitute RNN synapses with mixed sign by
biologically more plausible models involving only one sign, or [150] which de-
scribes connections of biological RNNs to classical Kalman filters. Interesting
further properties concern the role of noise in biological systems, including the
tolerance of stable oscillatory patterns to noise [13], or even potential beneficial
effects of response noise to better account for general synaptic noise [8].

Other approaches deal directly with a specific biological system or biological
effect and devise simple models which can explain such findings and, eventually,
lead to a better understanding of potential underlying mechanisms. This in-
cludes, for example, RNN models of the hippocampus [71], of cerebellar learning
[48], the visual cortex or retina [139, 98, 65], mirror neurons [24], as well as RNN
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models which mimic specific effects such as retrospective and prospective recall
activity [63], visual aftereffects and illusory contour formation [28, 91], pattern
generation of the locomotor system [51], the emergence of dendritic stimulus
selectivity [93] or modeling of eye saccades [97]. These models are partially
highly specific and this field is closely connected to biological research and new
developments and techniques in neurosciences. It targets at complementing the
theoretical models by experimental data.

Several particularly interesting research directions deal with the understand-
ing and modeling of biologically plausible and effective training mechanisms
implemented in biological networks. One very active and particularly promising
field of research concerns biological explanations of reinforcement learning pro-
cesses in the brain, as presented e.g. in [107, 45, 116]. Reinforcement learning
can bridge the gap between fully unsupervised paradigms, which can be well
explained by different biologically plausible unsupervised models developed al-
ready at a very early stage in neural network research e.g. by Kohonen and von
der Malsburg (recent work on unsupervised organization in RNN can be found
in [38]), and supervised learning, which often relies on biologically not very plau-
sible mathematical terms such as gradients and higher order derivatives.

7 New training paradigms

One of the merits of a deeper mathematical analysis of RNNs is the beneficial
effect on efficient and robust training algorithms. As an example, conditions
for RNN stability can be directly put as constraints to RNN learning applied
to control tasks. Traditionally, RNN training mostly takes place according to
one of two different paradigms: extensions of Hebbian learning for fully recur-
rent auto-associative memory RNNs; and gradient based approaches for classical
supervised tasks in the frame of time series modeling and prediction. For the
computation of gradients, either backpropagation through time (BPTT) or real
time recurrent learning (RTRL) is commonly used, constituting efficient ways to
compute the gradients (and, if necessary, also higher derivatives) in a forward-
backward or purely forward way. However, it has been observed very early that
gradient based training faces the problem of long-term dependencies, i.e. numer-
ically stable backpropagation of error signals over long periods of time is hardly
possible. Correspondingly, a large variety of modifications has been proposed,
but still no widely accepted eflicient training model exists in this framework.
Research on RNN training separates into diverse approaches to tackle this
fundamental problem: some work deals with a better numerical realization of
basic RTRL and BPTT training, including e.g. adaptive learning rates and a
combination of BPTT and RTRL [127, 85, 153, 25] as well as extensions of these
classical paradigms to more general models such as complex valued or spiking
neurons [136]. As an alternative training paradigm, extended Kalman filter
training is frequently used for RNN training, showing good results depending on
the underlying task at hand [26, 109, 37, 108]. Further, formulations of RNN
training as a reinforcement problem become more and more common to overcome
the problem of temporal credit assignment. However, these methods often suffer
from very long training times [39, 132, 52]. Alternative optimization methods
are offered by classical meta-heuristics which are adapted to RNN parameter
optimization such as evolutionary algorithms or particle swarm optimization
[83, 149, 117]. Some approaches try to avoid the problem of vanishing gradients
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by designing the architecture appropriately, e.g. restricting recurrence basically
to linear neurons as done in long short term memory and extensions thereof
[117].

If prior knowledge about the task is available, knowledge based modeling can
shape the search space towards efficient solutions. One common framework is
offered by neuro-fuzzy systems such as e.g. classical Mamdani or Takagi-Sugeno
controllers put into the architecture of an appropriate RNN [95, 61]. Efficiency
can also be gained by means of a decomposition of the learning task using e.g.
mixture of experts [95, 64] or incremental approaches [99]. As an alternative
to neuro-fuzzy systems, the close link of RNNs to the dynamics of classical fi-
nite automata has been observed already very early and methods to put known
automata rules into a RNN before training have been proposed. The inverse pro-
cess, extraction of finite automata from RNNs, is also approximately possible
(since RNNs are more powerful than finite automata, this is necessary an ap-
proximation), and can lead to much better long term behavior and generalization
than the original RNN [54].

Despite these promising approaches no efficient learning algorithm for RNNs
which is universally accepted exists by now, and also the underlying theory
which guarantees the principled learnability of RNNs e.g. in the classical sense
of probably approximate learnability is far from understood [41, 94].

8 Reservoir computing

One of the fundamental new paradigms and possible breakthroughs in RNN
learning is offered by the principle of reservoir computing, which has been intro-
duced simultaneously in several RNN models and corresponding learning algo-
rithms, in particular in echo state networks (ESN) [55] and liquid state machines
(LSM) [88]. Later it was shown under the notion backpropagation decorrelation
(BD) that a reservoir with online learning naturally arises by simplification of
a rigid error function minimization approach [129]. Basically, this type RNN
learning rules rely on a usually fixed recurrent network often termed “dynamic
reservoir” or just “reservoir”, which displays a rich but untrained dynamics,
and a simply trainable readout. This mostly consists of only one linear layer
and can therefore be trained analytically using e.g. the standard pseudo-inverse
of the reservoir activations or using standard online schemes like least mean
squares. LSM, ESN, and BD originally differed in the exact form of the reser-
voirs and learning rules, but these techniques are now generally referred to as
Reservoir Computing (RC) systems [143]. Recent theoretical work [118] even
further brought the theoretical work on ESNs and LSMs closer together. Inter-
estingly, these models are not only very fast to train, but they are also biologically
relevant, since training can be restricted to direct Hebb training of the readout
instead of a mathematically complicated gradient training of the recurrent reser-
voir. The overall structure and learning method is very similar to models of the
cerebellum, a connection which has been explored to some detail in [152] .

Surprisingly, these models show excellent learning behavior depending on the
task at hand (see e.g. [57]). It has been shown that they constitute universal
approximators of relevant functions such as filters with fading memory. However,
their full potential regarding practical applications as well as ways to best design
the reservoir for a given task have not yet been fully understood.

Recent research in reservoir computing concerns, on the one hand, appli-
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cations and benchmark comparisons to test the applicability of these ideas to
different areas. This includes applications for language modeling [137], control
[141], and time series modeling [142], for example. Optimal training of reservoir
networks constitutes a further active field of research, whereby this concerns
both, the adaptation of the readout as well as an optimum design of the re-
current reservoir (an overview can be found in [87]). While the readout relies
on supervised paradigms including, for example, support vector machines [124]
or logistic regression [29], the reservoir is created based on general principles
or using only very slow adaptation. Promising approaches propose to modify
the connections such that the states are Gaussian distributed [120] or Laplacian
distributed [12], to use highly clustered connectivity as present e.g. in scale-free
networks [27], to enlarge the reservoir capacity by means of leaky integrators [58],
or to include stability issues into reservoir adaptation such that maximum decor-
relation is achieved together with robustness [130]. Note that, while adapting
the reservoir, its stability should always be guaranteed, which can be guaranteed
by classical conditions of stability theory as presented e.g. in [130, 14].

While RC is usually applied to spatio-temporal or sequential input, in recent
work, the use of RC on static or semi-static data has also been researched [30,
113]. In this case the reservoir acts as a primal-space kernel which is intrinsically
regularized by the stable dynamics of the recurrent network. In this context, it is
of particular interest that a reservoir based architecture can allow online learning
of static mappings, while data are presented in temporal correlation [112]. This
is a very typical task in robotics applications, where data are generated and
evaluated along trajectories such that previously only local models with their
limited generalization capabilities could be used.

An important recent trend is the research on hierarchical reservoir systems.
One of the disadvantages of RC systems is that they have trouble coping with
spatiotemporal data where the relevant information spans a large frequency
range (such as in speech: ranging from sound features over phonemes to words).
A first solution is presented in [56], where a hierarchical RC system is presented
where the layered readout is trained using backpropagation. A fundamental
work in this direction recently showed that such a hierarchically organized re-
current architecture can emerge also under a classical BPTT training scheme
when using different time scales [151].

Interestingly, reservoir models constitute efficient biologically plausible mod-
els which also allow a very efficient realization in hardware as demonstrated e.g.
in the approach [119] or even as a novel computing approach in photonics [140].
Although their practical applicability and optimal training is still a matter of
recent research, they constitute one of the most promising RNN models of re-
cent years to bridge the gap between biologically plausible models and efficient
learning systems with non-trivial applications.

9 New models

Apart from reservoir models, quite a few other new RNN models have been
proposed in recent years to fill the gap of spatiotemporal pattern processing
using connectionist systems. Mostly, these new models can be put into the
frame of classical RNNs as characterized by the standard dynamic equations
above. However, a few models have been proposed which add fundamental new
principles to recurrent processing rather than only a minor extension of known
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models. As already mentioned, based on the principle of full recurrence and
cost function optimization, RNNs can solve difficult optimization tasks. One
particularly interesting model is offered by the competitive layer model which
can be used as an efficient and trainable RNN for perceptual grouping, thus
automatically solving non-trivial tasks in image processing [144] and automatic
segmentation of task demonstrations in imitation learning [101].

Partially recurrent networks are driven by the input sequence and can thus be
used for time series prediction and modeling. This principle has been generalized
to more complex recursive structures, in particular tree and graph structures:
so-called recursive neural networks constitute well-established models for the
processing of trees, thus they can be used to bridge the gap between symbolic
data and connectionist processing, since trees naturally encode formulas and
symbolic terms. These models have recently been generalized to graph structures
including acyclic and even cyclic graphs, thus opening the way towards efficient
and fault tolerant machine learning techniques on general graphs [43, 11].

One further active and emerging field of research is the unsupervised training
of recursive systems, where very diverse architectures which mirror different
principles and capacities exist [42, 7].

10 Conclusions

One of the next big challenges in machine learning will be the processing of
temporal or sequential data. In many application areas such speech recognition,
robot control, forecasting, language understanding, etc. the current approaches
seem to asymptote to a level of performance well below what humans can achieve.
RNNs form a very compelling candidate for solving this conundrum: the model
has strong connections to biological systems, it has extensively been theoretically
studied, and owing to the recent advances in learning methods, can be efficiently
and robustly trained. The next hurdle is devising architectures and techniques
that can cope with vast and noisy application domains where information present
in a wide temporal range needs to be integrated. Online and incremental learning
in real time will get even more important for adaptive technology like interacting
robots or speech processing devices. A further issue concerns data with different
intrinsic timescales as e.g. found in robotics, where controller and planning
levels contribute differently to movement, which can be tackled by hierarchies of
systems or more complex recurrent networks displaying different timescales as
well. As discussed, to all of these problems first pioneering work is just starting
and can now rely on a large variety of promising approaches.
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