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Abstract. The aim of the work is to integrate the information modula-
tion of the inter-relations between EEG scalp measurements of two brain
states in a connectivity graph. We present a sparse differential connec-
tivity graph (SDCG) to distinguish the effectively modulated connections
between epileptiform and non-epileptiform states of the brain from all the
common connections created by noise, artifact, unwanted background ac-
tivities and their related volume conduction effect. The proposed method
is applied on real epileptic EEG data. Clustering the extracted features
from SDCG may present valuable information about the epileptiform focus
and their relations.

1 Introduction

Connectivity analysis using scalp EEG or fMRI data have been done based on
different measures in the literature. The prominent among these measures are
synchronization likelihood [1], correlation coefficients [2, 3], coherence [4], and
Granger causality [5]. Furthermore, several types of evidences have been sug-
gested in the literature proposing some measures to characterize topographical
properties of the networks [3, 6, 7, 8]. There are also interests in simultaneous
EEG and fMRI connectivity [8, 9].

In this paper, we present a sparse differential connectivity graph (SDCG) to
study the relation between electrodes in two brain states based on the maximal
overlap discrete wavelet transform (MODWT) [10], wavelet correlation estima-
tion [3, 11] by means of connectivity measure, and multiple hypothesis t-test. In
particular we address whether it is possible to benefit from connectivity graphs
on scalp EEG for characterization of epileptiform sources.

*We gratefully acknowledge Fabrice Wendling and Isabelle Merlet for providing the simu-
lated data and Frédéric Grouiller for acquiring the real data of this study.
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The paper is organized as follows. In Section 2, we describe the background,
and the proposed approach. Section 3 is devoted to the experimental results of
the proposed method. Concluding remarks are presented in Section 4.

2 Material and methods

2.1 Epilepsy

In epilepsy an area of the brain begins to discharge abnormally during a sudden
and recurrent attack called seizure. Between two seizures, interictal epileptiform
discharges (IED) may appear in the EEG measurements. The IEDs are waves
or complexes (defined by International Federation of Societies for Electroen-
cephalography and Clinical Neurophysiology (IFSECN), 1974) discriminated
from background activity. Since the appearance of IED has low probability,
their quantitative analysis is rather challenging.

2.2 MODWT correlation estimation

In this purpose, wavelet correlation [11] is used as a measure of connectivity. The
estimation of this measure is carried out utilizing the maximal overlap discrete
wavelet transform (MODWT) [10], which is similar to discrete wavelet trans-
form, but the signal is not subsampled and instead the filters are upsampled
at each scale. Suppose d;'[k] and d}*[k] are the jth level MODWT coefficients
of two stochastic processes with zero-mean stationary Gaussian backward differ-
ences (s1]k] and sa[k]) [12]. The MODWT estimator of the correlation coefficient
of s1[k] and s3[k] at scale j is:

Cov {dg.“) [k, d\*2) K] }

(1)

Psisa(j) = - -
VVar(d™ (k) Var(d§™ k)

where Cov and Var are the estimations of covariance and variance respectively.
This correlation coefficient estimation is asymptotically normally distributed
with characterized confidence interval [12].

2.3 Proposed method

The flowchart of the proposed method is shown in Fig. 1.

1. EEG data preprocessing: Since our final project is simultaneous EEG
and fMRI analysis, the EEG data was recorded inside the MR scanner. The
first preprocessing step is to remove the MR artifacts using the method
introduced in [13]. Next the expert neurologist labels the cleaned data
by determining the start and end time points of IED occurrences as IED
labels and time intervals without any IED as Non-IED labels. At the end,
the 2-4 Hz MODWT coefficients of cleaned data are segmented using these
labels.
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Fig. 1: Flowchart of the proposed method. The EEG preprocessing (top), graph
computation and characterization (bottom).

We have experimentally found 2-4 Hz wavelet coefficients as the best repre-
senting features of IED signals. The advantages of wavelet cross-correlation
over Fourier cross-correlation has been cited in [11]. Moreover low fre-
quency trends of the EEG data, which have unwanted effects on correlation
estimation, can be easily removed by wavelet decomposition.

2. Graph computation and characterization:

MODWT Correlation estimation: The MODWT cross-correlation based
connectivity measure [12] is used to calculate the correlation coefficients
between each pair channels of IED (Non-IED) segments denoted as c/*P[k]
(N IED[E)e RY>*Ne | k= {1,2,...,N¢}, I = {1,2,..., Ny} where Ng,
and Np are respectively number of possible connections, and number
of IED (Non-IED) labels. The matrix of row concatenation of ¢/FP[k]
(cNom-TED[E]) vectors, i.e. wavelet correlation of all the connections and all
the time IED (Non-IED) labels are denoted as I"*P[k] (IN°""EP[k]).

Reference sensitivity reduction and multiple hypothesis t-test (MHT): By
thresholding matrix of wavelet correlation, I"*P[k] (IN"1EP[k]) the com-
mon connectivity graph [3] for IED (Non-IED) state will be obtained (two
separate graphs for each state). These common graphs have several prob-
lems in our application: (1) To obtain a sparse graph, thresholding is
needed, and the graph depends on the thresholding; (2) The neighborhood
nodes are connected due to the volume conduction effect; (3) Comparing
two separate connectivity graphs of two brain states to determine the dis-
tinguished connections is rather challenging. These problems are solved by
applying multiple hypothesis t-test between I'™P[k] and IN°"'EP[k]. For
each connection a t-test upon the following hypothesis is carried out:

H(S : Mﬁ = Mt2 (2)
Hi: pi#
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where t = 1,..., N¢, and p; is the mean of IED (¢ = 1) and Non-IED
(i = 2) groups. The non-zero t — values construct the SDCG. The positive
and negative t — values are separated for better analysis. The positive
(negative) t — values construct positive (negative) t — value graph. A con-
nection in positive (negative) t —value graph shows the increase of wavelet
correlations in IED (Non-IED) time intervals.

A problem regarding the effect of the EEG reference (EEG data of a spe-
cific reference is the subtraction of all the channels from that reference)
is the sensitivity of the connectivity graph to the reference. If we cal-
culate the TP [k] (IN°™EP[£]) matrix for two different references, the
resulted graphs are not exactly the same, but not completely different.
To solve this problem, the I'™P[k] (IN°"TEP[k]) matrix is calculated for
all possible references. Row concatenation of these matrices is denoted
as R™P k] (RN°™EP[k]). Then the MHT is applied between R™P[k]
and RN"'EP (L] The resulted graph gives the significant robust connec-
tions between the two brain states (IED and Non-IED) by considering the
temporal and spatial information.

Feature extraction and clustering: The nodes of the resulted SDCG are
quantified by global and local efficiency (GE and LE) [6, 7]. High global
efficiency of one node shows that the node is connected to many nodes
of the graph. Local efficiency of one node is high when the neighbors
of this node are highly connected. GE and LE are calculated for all the
nodes of positive and negative ¢t — value graphs. The k-means method
is utilized to cluster the nodes (EEG electrodes) of the SDCG based on
five features including GE, LE of positive and negative ¢t — value graphs
and power t — values. We can calculate the power of each electrode in
IED and Non-IED time intervals in addition to correlations between the
electrodes. Power t — values are results of MHT between the powers of
IED and Non-IED time intervals in the related frequency band. The source
cluster (cluster including the electrodes close to the source) is labeled due
to the physiological information about the patient.

3 Results and discussion

The proposed method is applied on the real and simulated [14, 15] EEG data
of epileptic patients. Please refer to [13] for the protocol of the real data. In
the SDCG of the simulated data, the electrodes near the source receive IED
signals (volume conduction effect related to TED sources), hence the source elec-
trodes (electrodes close to the source) have high LE in positive ¢t — value graph.
Moreover, the GE of the source electrodes is high in negative ¢ — value graph,
since the correlation between electrodes far from the source and source elec-
trodes decreases during IED time interval. Similar properties is experimented
in the real data. Therefore, GE, LE of positive and negative ¢ — value graphs
and power ¢ — values (Section 2) are selected to cluster the electrodes. The
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Fig. 2: Sparse differential connectivity graph (SDCG) for right frontal epilep-
tic patient. (a) Positive ((b) negative) ¢ — value graph connections show that
the wavelet correlations of IED (Non-IED) time intervals are significantly higher
than Non-IED (IED) time intervals. The thickness of the connections are pro-
portional to the absolute of ¢ — values. (c) The positive (negative) t — value
connections between source cluster electrodes are depicted in solid (dashed) lines.
The source electrodes are shown in black.

source cluster obtained by clustering (k-means) in this 5-D feature space for a
real right frontal epilepsy data is shown in black in part (c) of Fig. 2. The
positive, negative t — value graph connections, and the connections between
the source cluster electrodes are depicted in parts (a)-(c) of this figure, respec-
tively. Solid (dashed) lines show the positive (negative) ¢ — value connections
in part (c). Each positive (negative) ¢ — value connection indicates the increase
of wavelet correlations during IED (Non-IED) time intervals. The thickness of
the connections is proportional to the absolute of ¢ — values. The validity of
the results is proved in the simulated data in which the electrodes close to the
true source are detected. This result in real data is in accordance with the ex-
pert neurologist witness. Since SDCG indicates the connections whose wavelet
correlations changing during IED and Non-IED time intervals, the noise, arti-
facts, background activity and their volume conduction effect are removed. But
the volume conduction of the IED sources exists which promotes clustering the
source electrodes as described above. Previous EEG connectivity studies sug-
gested connectivity analysis on EEG activities (results of applying linear inverse
problem). However any inverse problem method is based on some assumptions
about the sources. The validity of the sources are dependent on these assump-
tions and the problem of volume conduction exists. To avoid these problems
we applied connectivity analysis on the scalp EEG directly. However our aim
is to study the brain functionality during epileptic and non-epileptic states of
the brain to determine the related electrodes to the epileptiform sources from
non-invasive EEG. This information is valuable for the intracranial electrode
insertion. For precise seizure focus localization, we will apply the connectivity
analysis on the intracranial EEG.
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4 Conclusion

The proposed connectivity graph indicates the significant distinguished connec-
tions between two different brain states. By integrating complicated temporal
information of EEG signal of the epileptic patient into a sparse differential con-
nectivity graph and clustering the extracted features from the graph, we could
determine the closer electrodes to the epileptiform sources.
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