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Abstract. We present a model that can perform ICA-like learning by
simple, local, biologically plausible rules. By combining synaptic learning
with homeostatic regulation of neuron properties and adaptive lateral in-
hibition, the neural network can robustly learn Gabor-like receptive fields
from natural images. With spatially localized inhibitory connections, a
topographic map can be achieved. Additionally, the network can solve the
Földiák bars problem, a classical nonlinear ICA task.

1 Introduction

Many neural network models have been proposed for independent component
analysis. Although grounded on information theoretic principles, they fail to
provide a full story of how ICA-like computation could be performed by biological
neurons with simple, local, biologically plausible rules. Additionally, previous
models typically require tight regulation of some parameters (transfer function,
lateral inhibition) based on the statistics of the input [1, 2]. Clearly, additional
plastic changes must account for this parameter tuning in biological networks.

We hypothesize that intrinsic plasticity (IP), a homeostatic mechanism known
to bring the activity of the neuron back to baseline in response to experimen-
tally induced changes in firing rates [3], may contribute to ICA-like processing
in neural networks. Our model extends previous work on how a single neuron
could recover a single independent component by combining IP and Hebbian
learning [4]. Similar to classic single-unit implementations of ICA [1], the out-
put of different neurons is decorrelated by adaptive lateral inhibition. Our model
offers a simple, biological plausible account of how ICA-like computation could
be performed in a neural system. Moreover, unlike previous models, our system
maintains its function for a wide range of parameters, a robustness reminiscent
of biological systems.

The paper is organized as follows. After shortly presenting the IP model from
[4], we introduce our network model, which is shown to learn Gabor filters from
natural images. A topographic map is then derived, by limiting the range of
the lateral inhibition to the spatial neighborhood of each neuron. Additionally,
our model can solve the Földiák bars problem, a classical nonlinear ICA task.
We conclude by comparing our work with related models for V1 receptive field
development.
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2 Model

2.1 Intrinsic plasticity

It has been hypothesized that IP may maximize the information transmission
between the neuron’s total input and output, under the constraint of a fixed mean
firing [5, 4]. This is equivalent to forcing the output distribution of the neuron to
an exponential. As in [4], we consider a parameterized sigmoid for the transfer
function y = Sab(h) = 1

1+exp(−(ah+b)) with a ∈ �>0 and b ∈ �. The distance
from the desired distribution, measured by the Kullback-Leibler divergence, is
minimized by stochastic gradient descent, yielding the parameter update rules:
Δa = ηIP

(
1
a + h − (2 + 1

µ )hy + 1
µhy2

)
, Δb = ηIP

(
1 − (2 + 1

µ )y + 1
µy2

)
, where

μ is the desired mean activity level and ηIP is a small learning rate.

2.2 Neural network

The network consists of N neurons, which receive a 2× 100 input �x from a ON-
and OFF- population in the lateral geniculate nucleus (LGN), and are laterally
connected by inhibitory synapses. The structure employed here is similar to that
in [6]. Initially, feed-forward weights W have random values taken uniformly in
the range [0, 1], while the inhibitory weights U are all set to zero.

The excitatory drive to the neurons is calculated as: �hexc = W�x, while the
all-to-all lateral inhibition is given by: �hinh = AinhU�y. Here, �y denotes the output
of each neuron and Ainh is a scaling factor. The neuron output is determined by
the equation yi = Saibi(hi), with �h = �hexc − �hinh. This equation is implicit with
respect to yi and must be solved numerically at each iteration.

The feed-forward weights are updated according to a Hebbian-like covariance
rule: ΔWij = ηHebb(yi − μ) · (xj − Wij), and inhibitory weights are updated by
a classical anti-Hebbian rule: ΔUij = ηanti(yiyj − μ2), where ηHebb and ηanti are
learning rates. The diagonal elements are set to zero and all values are rectified.

The learning rule for the feed-forward connections —through the factor
(yi − μ)— makes sure that the receptive fields stay stable once the desired
output activity is reached, while the normalization term prevents the weights
from unbounded growth. The anti-Hebbian learning on the lateral connections
increases the inhibition between two neurons which repeatedly get excited by the
same stimulus, again with a normalization term implementing synaptic scaling.
A stationary state (E[ΔUij ] = 0) is reached once the average outputs of the
neurons have the desired mean μ and their activities are uncorrelated, such that
E[yiyj ] = E[yi]E[yj ] = μ2. Similar learning rules are used in [6] (see Section 4).

3 Results

3.1 Learning Gabor receptive fields

Images from the van Hateren dataset [7] are preprocessed by a Difference of
Gaussians (DoG) filter, with the center width of 1 pixel and 1.2 pixels for the
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surround, similar to [8]. Image patches of size 10 × 10 pixels are extracted
randomly across all possible positions. The mean of each patch is subtracted
and the resulting vector is normalized to unit (Euclidean) length. The rectified
pixel values are simulated as a population of ON- and OFF-response cells.

Figure 1 shows the results of a run with 3× 105 iterations, when the system
has converged to a stationary state. Simulation parameters are: ηHebb = 0.01,
ηanti = 0.002, ηIP = 0.02, μ = 0.005, Ainh = 1. Initially, ai(0) = 800 and
bi(0) = −500 for all i. The neurons develop different Gabor-like receptive fields,
qualitatively comparable to those of other computational models [9, 6, 8]. Since
uncorrelated outputs are only a necessary condition for independence, we es-
timated the pairwise mutual information to assess independence between the
activities of different neurons. The normalized pairwise mutual information (es-
timated during the last 105 iterations) decreases to a small average value of 0.024
(see [8] for details on normalization of the mutual information estimate). This
corresponds to 2.4% of the maximal possible value.

Fig. 1: Natural images. The connection strengths Wij of the N = 100 neurons.
The color map is chosen such that gray corresponds to zero filter strength. From
left to right: Initial feed-forward connections; receptive fields after 5× 104, 105,
resp. 3 × 105 iterations.

3.2 Learning topographic representations

We extend the model above, by adding a spatial structure to the neural network.
We consider each neuron to be located on a two-dimensional rectangular grid
with periodic boundary conditions. A kernel function k(d) is used to modulate
the strength of the lateral inhibition between neurons of (Euclidean) distance d
on the grid defined above. In particular, we use a rectified DoG kernel with two
parameters σ1 and σ2.

Figure 2 shows the resulting orientation maps for a network with N = 400
neurons (i. e. a 4 times overcomplete basis) using two different choices for the
kernel, but otherwise the same parameters as in section 3.1. Even without
explicit excitatory lateral connections, the imposed connection pattern leads to
the formation of patches of similar orientations whose size is determined by the
width of the used kernel. On a more coarse-grained level, one can observe sharp
discontinuities as well as rather smooth transitions in the orientation directions
across the map.
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Fig. 2: Emergence of orientation maps. N = 400 neurons are used and receptive
fields are shown after convergence. Left: DoG kernels used (normalized to unit
height). Middle: Receptive fields using DoG kernel k(d) with σ1 = 7 and σ2 = 2.
Right: Receptive fields using DoG kernel k(d) with σ1 = 3 and σ2 = 1.

3.3 The Földiák bars

The Földiák “bars test” [10] defines input images as a collection of horizontal and
vertical bars (with a width of one pixel), superimposed non-linearly (intersection
points are as bright as the rest of the bar). Each bar occurs independently with
a fixed probability p.

For consistency, the mean of each images is subtracted to obtain both positive
and negative intensity values which can be fed to the ON- and OFF-cells. The
model structure is the same as described in section 2.2 with N = 20 neurons
(a complete basis). Figure 3 shows the receptive fields for various intermediate
stages and the final configuration after 3×105 iterations. The network converges
to a stationary state where each neuron learns a different bar. The parameters
for the simulation are: ηHebb = 0.01, ηanti = 0.01, ηIP = 0.01, μ = 0.05, Ainh = 1.
Initially, a and b are set to the same value for all neurons, namely ai(0) = 50
and bi(0) = −50.

Fig. 3: The Földiák bars. Receptive fields evolution for the N = 20 neurons.
The color map is chosen such that gray corresponds to zero filter strength, and
white to the maximum positive value. From left to right: Initial feed-forward
connections; receptive fields after 4 × 104 , 6 × 104, resp. 3 × 105 iterations.
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Fig. 4: Receptive fields for bars stimuli for different parameter settings. From
left to right: Ainh = 0.5, 0.8, 4, 6.

3.4 Robustness

We investigated how sensitive the development of receptive fields is with respect
to the network parameters, for both the natural image patches and the bars
problem. Due to computational constraints, only variations along one dimension
at the time in parameters space were considered. Table 1 summarizes the results.
For both the Gabor-like receptive fields and the bars the results are stable in a
wide range of parameters. Due to the fact that the sigmoid output is bounded,
a reasonable match with an exponential can only be achieved for small means.
Exemplarily, Figure 4 shows the receptive fields for the extrema of valid values
for Ainh and —for comparison— two non-convergent cases.

parameters ηIP ηHebb ηanti μ a0 b0 Ainh

bars: lower bound 0.01 0.002 0.005 0.02 1 -1000 0.8
bars: upper bound 0.1 0.1 0.1 0.12 1000 0 4

images: lower bound 0.01 0.005 0.001 0.002 1 -1000 0.01
images: upper bound 0.2 0.02 0.01 0.008 1000 0 2

Table 1: Robustness to model parameters. For the bars, we consider parameters
for which the network learns the complete basis after at most 2× 105 iterations.
For natural images, parameter ranges are shown for which the system still de-
velops localized Gabor-like receptive fields after at most 3 × 105 iterations.

4 Conclusions and future work

Information-theoretic approaches have been successfully used to explain certain
firing properties of biological neurons [9]. We were able to learn receptive fields
resembling those of simple cells in visual cortex in a new neural network model
that combines IP, Hebbian learning and adaptive lateral inhibition. Further-
more, our method solves the bars problem on which traditional ICA or PCA
algorithms are prone to fail [11]. While other approaches require significant pa-
rameter tuning, our system shows great robustness to wide parameter changes,
as expected for biological neural networks. This is owed to the IP, which serves
a homeostatic purpose stabilizing the network dynamics, especially during the
decorrelation process.
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The present model has some similarities to earlier work. In particular, it
shares the use of an intrinsic plasticity rule with the model in [8], which could
produce a topographic map of V1-like receptive fields by spatially selective lateral
inhibition. However, our model replaces its neighborhood function gating the
learning with the more biologically plausible adaptive lateral inhibition. Also,
Gabor-like receptive fields were developed in [6], using all-to-all lateral inhibition.
Instead of the IP, this work considered a first-moment dependent sensitivity rule
regulating parameter b, but kept a fixed, adjusting it ”by hand” as to yield
exponential-like output distributions. This adaptation is done automatically by
the here-used intrinsic plasticity rule.

As output activities remain somewhat correlated in the stable state, it is
sensible to assume that a second network layer, receiving this activity as input,
would discover some non-trivial structure. There have been only few successful
attempts to construct such iterative or hierarchical models for ICA [12]. The
difficulty lies in the fact that linear ICA models require some additional non-
linear processing for converting the output of one layer into a suitable input for
the subsequent one. The nonlinear model proposed here naturally works with
non-negative, heavy-tailed distributions for both input and output, making our
network a feasible building block for more complex hierarchical structures.
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