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Abstract. This paper describes a method to improve uncued Brain-
Computer Interfaces based on motor imagery. Our algorithm aims at
�ltering the continuous classi�er output by incorporating prior knowledge
about the mental state dynamics. On dataset IVb of BCI competition
III, we compare the performances of four di�erent methods by combining
smoothed probabilities �ltered by our algorithm/direct classi�er output
and static/dynamic classi�er. We demonstrate that the combination of
our algorithm with a dynamic classi�er yields the best results.

1 Introduction

Brain-Computer Interfaces (BCIs) aim at providing people su�ering from severe
motor diseases with a tool to restore communication and movement [1]. Over the
past 15 years, many signal processing methods have been developed for the on-
line extraction of relevant information from di�erent kinds of neurophysiological
phenomena. A typical example is motor imagery and its resulting somatotopical
and frequency-speci�c brain signals to control 2-dimensional cursors. Many BCI
developments showed and rely on the controlateral mu-power (∼ 10Hz) desyn-
chronization in the sensorimotor cortex during motor imagery. Such a signal is
typically measured using EEG. However, although high classi�cation rates have
been achieved in tightly controlled BCI paradigms, those systems have not yet
been successfully applied to large patient populations in order to improve the
quality of their living. Indeed, a major limitation of most of these systems lies
in the cued motor imagery paradigm they use. The users have to send a com-
mand within a precise time interval enforced by the computer. Although that
operating mode helps extracting user's intent from the noisy and unspeci�c EEG
activity, they are di�cult to use in practice and cognitively very demanding.

In order to promote e�cient practical BCI systems, a signi�cant e�ort is
currently devoted to uncued paradigms [2]. Dataset IVb of BCI competition
III [3] was proposed to encourage such developments although only one research
group submitted a response at that time. Such problems can only be tackled by
the careful combination of �ne and fast methods for each step of the sequential
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treatments, from real-time acquisition of the EEG up to the estimation of the
�nal command. First, spatial �lters have to be used to transform the global and
unspeci�c EEG activity measured by an array of scalp sensors onto local and
task-related signals; then since motor imagery tasks are known to involve narrow
band frequency-speci�c modulations of some brain activity, the best relevant
features have to be provided to the classi�er. Finally, this paper proposes that
the output of the classi�er can be e�ciently �ltered using a variational Bayesian
Hidden Markov Models to decrease false positive and negative rates. This step
involves the de�nition of prior probabilities about the mental state dynamics.

This short paper is organized as follows. In the �rst section, the paradigm
is brie�y described. In the next section, we detail the di�erent steps of our
method, including the o�-line learning of the parameters and the on-line moni-
toring of mental states. Another section is dedicated to the quantitative compar-
ison between the dynamic version of our approach (HMM) and static one (direct
classi�er output). The method and results are discussed in the �nal section.

2 Experimental Paradigm

We just recall the crucial points of the paradigm. An extended description of
the dataset can be found on the BCI competition website1 (BCI competition
III, dataset IVb). This data set was recorded from one healthy subject and
contains two sessions without feedback. During the �rst session, visual cues
indicated which of the following 2 motor imageries the subject should perform
during 3.5 s: (L) left hand, (F) foot. The presentation of target cues were
interleaved by periods of random length, between 1.75 and 2.25 s, in which the
subject could relax. In the second session the three classes (Left hand, Foot
and Rest) were triggered by acoustic stimuli for 1.5 up to 8 s. The recorded 118
channels were digitized at 1000Hz, band-pass �ltered between 0.05 and 200Hz,
and down-sampled at 100Hz.

3 Methods

3.1 O�-Line Learning of the Model Parameters

Spatial Filters Common Spatial Patterns by Joint Approximate Diagonaliza-
tion [4] was performed on the calibration dataset (session 1) to determine e�cient
spatial �lters. The covariance matrices of EEG signals x(t) ∈ RN (N = 118 is
the number of EEG channels) associated with class �Left hand� and class �Foot�
respectively (from t = 0 s to t = 3.5 s of each trial) are jointly diagonalized.
This procedure yields a set of 118 spatial �lters out of which L = 6 are selected
using an Information Theoretic Feature Extraction algorithm [4]. The number
of selected features has been chosen by cross-validation based on the calibration
session only. Spatial �lters are aggregated into a N × L matrix W . Filtering
signals are given by s(t) = WT x(t).

1http://ida.�rst.fraunhofer.de/projects/bci/competition_iv/desc_1.html
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Features Extraction In each trial, the relevant features were taken as the log-
energy of the L components of s(t) in nine di�erent frequency bands (7-9, 9-
11,. . . , 23-25Hz). The power corresponds to the variance of the 5-order But-
terworth �ltered signals between t = 2.5 s to t = 3.5 s as optimized using cross-
validation on calibration dataset. This yields 9× 6 = 54 features for each of the
210 trials (105 �Left hand� and 105 �Foot� trials).

Classi�er Training Classi�cation is performed using a regularized logistic re-
gression (l1/l2 regularization) [5] to estimate a probability of belonging to class
�Left hand� or �Foot�. We interpret the resulting probability as conditional prob-
abilities of being in class �Left hand� or �Foot� given that the subject is not at
rest but indeed intends to send a command. In the following and for simplicity
of notations, we omit the ubiquitous conditioning of the probabilities on the
actual data segment. By construction, p(L|A) + p(F |A) = 1, where A indicates
the active state. Cross-validation using the calibration dataset is also used to
�x the regularization parameter among a �nite set of prede�ned values.

3.2 On-Line Mental State Monitoring

Testing our approach consists in detecting Left hand and Foot motor imagery
from continuous EEG. We insist on the fact that no timing information about the
task is known, thus we have to classify successive continuous EEG segments. As
segments, we consider overlapping (80%) windows of 1 s duration. In the absence
of any task, segments should be identi�ed as corresponding to a resting period
(R). Given a data segment, the above-de�ned features are extracted after spatial
�ltering over all channels. Then our two-class classi�er applies. Assuming that
the subject is being active, it provides us with an estimate of p(L|A) or p(F |A).
However, what we are really interested in, since the subject might be at rest, is
p(L) or p(F ) that relate to p(A) and p(R) by

p(R) = 1− p(A) = 1− [p(L) + p(F )] . (1)

Since p(L) = p(L,A) = p(L|A).p(A) and similarly for p(F ), the actual estimated
probabilities and the true probabilities of interest are linked by

p(L)− p(F ) = p(A). [p(L|A)− p(F |A)] . (2)

Importantly, the �nal decision should be based on the sign and amplitude of the
above di�erence. Note that if this di�erence is close to zero, this is either due to
close class probabilities (the classi�er cannot tell between the two classes, given
that the subject is active) or to a high probability that the subject is resting.
To distinguish between the active and resting states, another two-class classi�er
could be used, although the non-active class is di�cult to characterize due to a
high variability of the EEG signal during rest. In the current study, we consider
p(A) as a parameter of the model and denote it as δ. Note that in practice, δ
could be set based on our a priori knowledge of the BCI paradigm in use. In
other words, given the particular application of the BCI system, one might have
a strong prior about the proportion of resting periods, hence δ.
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On-line Classi�er Updates (Dynamic Classi�er) Uncued BCIs su�er from non-
stationarities that may come from di�erent reasons (changes in impedance be-
tween scalp and electrodes or learning e�ect by subject). In this paper the
adaptive procedure consists in two di�erent steps:

1. the training set size is kept constant but the oldest trials are replaced
by newer ones. As the labels of every segments are not known during
the test step, the crucial part consists in deciding whether we are sure
enough of the cognitive state of the subject to include the segment into
the training set. To do so, we model p(L|A) as a beta distribution with
shaping parameters recursively updated as a function of p(L|A). This gives
theoretical thresholds for p(L|A) and p(F |A) by computing 20-80 quantiles.

2. the classi�er is periodically retrained (every 30 s) using the updated train-
ing set. This step is made possible in real time because of the computa-
tionally e�cient logistic regression used in this paper [5].

Variational Mental State Filtering In this paper, we further propose to smooth
the estimated mental state dynamics (the estimated posterior class probabil-
ities). This is obtained by incorporating a priori knowledge in a HMM that
constrains the state dynamics. The HMM is de�ned by: (i) a �rst-order Markov
chain on the unobserved discrete variable (the hidden label) lt, with c possible
values (lt ∈ [1..c], here c = 3); (ii) an observation process in which the labels
are observed via a continuous c-dimensional variable dt ∈ Ic

(0,1). dt refers here
to the probability of each state at time t. If the state transition matrix T of the
Markov process is known, as well as some prior probability densities about each
mental state [6], then probability densities lt|d0, · · · , dt and lt−1|d0, · · · , dt are
multinomial densities given below, with shaping parameters αt and βt respec-
tively: {

αt ∝ dt exp
(
ln(TT )βt

)
βt ∝ αt−1 exp

(
ln(TT )αt

) ,
c∑

i=1

αi,t = 1 and
c∑

i=1

βi,t = 1 . (3)

By iterating at each time point t the above equations, we can infer the most
probable state given the observed/estimated conditional class probabilities and
transition matrix: lt = arg maxi∈[1..c] αi,t.

4 Results

Four di�erent settings are compared in the following. We combine direct classi-
�er output (predicted class is the one with the maximum probability)/predicted
mental state lt given by the HMM with static/dynamic classi�er. The transi-
tion matrix of the variational �ltering is herein imposed by the experimental
paradigm timings, namely the windows length and mental states duration. Here
we set T (L,L) = T (F, F ) = 0.8, T (L,F ) = T (F,L) = 0, T (R,R) = 0.8 and
T (L,R) = T (F,R) = 0.2. As depicted in �gure 1, the true and false positive
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rates (TPR and FPR) are used to draw the receiver operating characteristic
(ROC) curves, while classi�cation rate shows the performance of the system
when the subject is in active state.
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Fig. 1: Performance Measures de�ned from the confusion matrix.

The performance of the method when varying δ between 0 and 1 are sum-
marized in �gure 2.

It can be seen that the use of a static classi�er does not result in classi�cation
signi�cantly better than chance in case of raw unsmoothed probabilities. The
use of vbhmm combined with static classi�er yields tiny improvements but is
only better than chance for low and high FPR. We observe signi�cant increases
of performances by using adaptive versus static classi�ers. The combination of
vbhmm and the adaptive classi�er yields the best results.

5 Discussion and Conclusion

We proposed and demonstrated an original approach to tackle the di�cult issue
of uncued BCIs. We detailed the steps of this approach, which include spatial
�ltering, feature extraction in the frequency domain and classi�cation. We quan-
ti�ed the performance of our method and proved that it could be improved by
constraining the estimated decisions along time by smoothing the classi�er out-
come using a Hidden Markov Model of the mental state dynamics. We applied
this approach to the continuous control of a 2-dimensional cursor. However,
the same methods could apply to another uncued BCI paradigm with di�erent
settings that would imply the adjustment of the transition matrix of the HMM
and/or an appropriate tuning of the δ parameter. Future directions thus include
the development of a principle way to optimize these model parameters based
on both the data and prior knowledge of the experimental protocol.
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