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Abstract. The segmentation of ECG signal is a useful tool for the
diagnosis of cardiac diseases. However, the state-of-the-art methods use
hidden Markov models which do not adequately model the transitions
between successive waves. This paper uses two methods which attempt
to overcome this limitation: a HMM state scission scheme which prevents
ingoing and outgoing transitions in the middle of the waves and a bayesian
network where the transitions are emission-dependent. Experiments show
that both methods improve the results on pathological ECG signals.

1 Introduction

Physicians often use the electrocardiogram (ECG) signal to detect anomalies
in the heart dynamics of their patients. The ECG signal is a record of the
heart electrical activity which consists of successive beats made up of waves
and baselines. The delays between key points of these waves are of particular
interest [1] for the physicians to diagnose cardiac diseases such as the long QT
syndrome or the torsades de pointes. Therefore, an important problem called
ECG segmentation consists of delineating the ECG signal.

Most of the state of the art techniques [2, 3] rely on the use of the wavelet
transform [4, 5, 6] and hidden Markov models (HMMs, see [7]). Rather good
results are obtained on both normal and pathological ECG signals, but the fact
that transitions between successives waves are inherently difficult to model with
HMMs suggests that more complex models could lead to even better results.
A first solution proposed in [8] is to use hidden semi-Markov models (HSMMs,
see [9]) which include a modelling of the wave duration. However, HSMMs still
fail to model adequately the transitions for abnormal signals when the wave
lengths are subject to important variations. Therefore, we propose to use two
methods which attempt to lift the limitations of both HMMs and HSMMs: (i)
an HMM state scission scheme which prevents ingoing and outgoing transitions
in the middle of the waves and (ii) a bayesian network where the transitions are
emission-dependent. We show experimentaly that both methods improve the
segmentation quality on pathological signals.

2 State of the art in ECG analysis

Fig. 1 shows two annotated beats extracted from a real ECG signal. The seg-
mentation has been carried out by an expert; we can see that the beat consists
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of three waves (P wave, QRS complex and T wave) separated by three baselines
(B1, B2 and B3). In practice, algorithms do no work directly on this signal : it
has been shown easier [2] to use a high-dimensional representation obtained by
differentiating the signal or applying a wavelet transform [4, 5, 6].

Figure 1: Two annotated beats extracted from a real ECG signal.

In order to model an ECG signal, we can use HMMs in which the states S
are the waves and baselines, and the emissions O are the voltage levels of the
data. The HMMs make several assumption about the data: (i) each voltage
measure is an emission Ot whose probability only depends on the state St (or
wave) we are in and (ii) the transitions probabilities P (St+1|St) between states
only depend on the starting and ending states. The HMM architecture used in
this paper is shown on Fig. 2; the arrows represent transitions between states
and the small squares are the emission models.

Figure 2: HMM architecture for ECG segmentation.

The computation of the optimal state sequence for a given HMM and a
given emission sequence can be easily and efficienly carried out using the Viterbi
algorithm [10]. In fact, the main computational costs come from the estimation
of the emission probabilities. In the ECG segmentation case, it occurs in two
steps. Firstly, the ECG signal is mapped to a high-dimensional representation
using e.g. a wavelet transform which computes the convolution of the signal and
a wavelet at different scales. Secondly, a PDF estimator is built in the new space
from the training data.

A major limitation of HMMs is their poor modelling of transitions. Indeed,
in state St = a, the transition probability P (St+1 = b|St = a) to switch to state
St+1 = b does neither depend on the current value of the ECG signal nor on
the time already spent in a. Therefore, even if transitions outgoing from a given
wave W only occur on the downward slope of W , the Viterbi algorithm could
leave W on its rising slope if it better fits the data.
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A first solution to get rid of these limitations is to include an explicit mod-
elling of the state duration by using HSMMs. In HSMMs, the transition prob-
abilities depend on the starting and ending states and on the duration spent in
the starting state. [8] has shown that using HSMMs increases the segmentation
accuracy, but it is still inadequate. For example, if a very short wave occurs,
HSMMs will tend to extend its downward slope over the next baseline.

In the two following sections, we will see how we can improve HMMs to better
model transitions and enhance the segmentation of pathological ECG signals.

3 SME decomposition

In ECG signals, transitions between states only occur at the beginning and at
the end of waves and baselines. Therefore, a simple idea is to split each state s
corresponding to a wave or baseline W into the three new states ss, sm and se

which correspond to the starting, middle and ending parts of W , respectively.
For each observed beat, ss (se) corresponds to the w first (last) points of W
whereas sm correspond to the in-between points, where w is called the window
width. Fig. 3 shows the resulting HMM architectre.

Figure 3: HMM architecture for ECG segmentation with SME decomposition.

The advantage of using a HMM with this start-middle-end (SME) decompo-
sition is that transitions can no longer occur anywhere. Indeed, the only way to
begin (end) W is now to enter ss (leave se), what is only possible if the current
emission is probable enough w.r.t. the emission model in ss (se). Moreover,
the middle of the wave corresponds to state sm which can be only reached from
ss and leaved toward se. Notice that previous works (see e.g. [5]) used the
Baum-Welch algorithm to discover several substates for each wave; however this
last solution is unsupervised and does not aim to better model the transitions
between states.

Fig. 4(a) and Fig. 4(b) show the emission probabilities of a T wave and of a
B3 baseline obtained after applying a wavelet transform with a Coiflet wavelet
and two dyadic scales. We can see that the probability distributions for ss and
se are distinct and localised compared to the distribution for sm. Therefore, we
can expect that a HMM using the SME decomposition will easily discriminate
these three states. Leaving the middle part of a wave without passing through
the end part will then be hardly achievable.
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(a) (b)
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Figure 4: Distributions of the emission probabilities for a T wave and a B3 base-
line obtained with (a,b) the SME decomposition and (c,d) the EHMM model.

4 Emission-dependent transitions HMMs

Another possibility is to use a more powerful Bayesian network. Indeed, a HMM
is a specific case of more general Bayesian network [11] which allows modelling
probabilistic dependencies in data. In the model considered in this section, the
transitions depend on the starting and ending states, but also on the current
emission, as illustrated by Fig. 5 which shows the statistical dependencies be-
tween states and emission values. In fact, this emission-dependent transitions
HMM (EHMM) can be seen as a generalisation of the SME decomposition de-
scribed above: the probability to enter (leave) a given wave will increase as
the emission becomes closer from a statistical point of view to the emissions
corresponding to incoming (outgoing) transitions observed in the training data.

Figure 5: Statistical dependencies in an EHMM.
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On one hand, one drawback of EHMMs is that leaving the state correspond-
ing to a particular wave in its middle part is just very unlikely, not impossible.
But on the other hand, the training of EHMMS does not require to choose
a window width w; so that EHMMs should be able to provide more accurate
descriptions of the ECG signal dynamics.

Fig. 4(c) and Fig. 4(d) show the emission probabilities of a T wave and of a
B3 baseline obtained after applying a wavelet transform with a Coiflet wavelet
and two dyadic scales. We can see that the probability distributions for different
transitions are distinct and localised. Therefore, we can expect that an EHMM
will easily discriminate between ingoing transition, self transitions and outgoing
transitions, so that it will hardly leave a wave from its middle part.

5 Experiments

In order to check if the SME decomposition and the EHMMs obtain better
segmentations than the state-of-the-art HMMs and HSMMs, we have applied
these four methods on three kinds of pathological signals from the QT database
[12]:

• 3 records from the MIT-BIH arrhythmia database;

• 3 records from the MIT-BIH ST change database;

• 3 records from the MIT-BIH supraventricular arrhythmia database.

Each signal is filtered using a 3Hz-30Hz band-pass filter and preprocessed using
a wavelet transform with a Coiflet wavelet and 7 dyadic scales. For each method,
the emission probability density functions are estimated using Gaussian mixture
models (GMMs). The number of components of the GMMs was chosen using
10-fold cross-validation. The window width for the SME decomposition is w = 1.
Notice that the first and last annotations were imposed.

Tab. 1 and Tab. 2 show the results of the four methods. The quality of each
segmentation is assessed using (i) the percentage of correct classifications (or
accuracy), (ii) the ratio of the number of detected and real waves/baselines (or
single beat percentage) and (iii) the average error in ms between the bounds of
the detected and those of real waves (or consistency). Notice that the super-
numerary waves are not used to compute the consistencies. As mentioned in
[8], HSMMs outperform classical HMMs. However, they are themselves slightly
outperformed by the SME decomposition and EHMMs in terms of accuracies
and consistencies. The best single beat percentages are achieved with HSMMs.

6 Conclusion

This paper shows that the adequacy of the transition modelling is an important
issue for ECG segmentation using HMMs. Moreover, it proposes to use two
methods called SME decomposition and EHMMs which solve this problem and
obtain better segmentations than the state-of-the-art solution based on HSMMs.
We plan to perform more tests on a larger number of ECG signals.
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Method Accuracy Single beat percentage Consistency
HMM 94.83% 96.34% 9.70ms
HSMM 95.03% 99.18% 9.53ms

HMM+SME 95.23% 99.09% 9.18ms
EHMM 95.12% 95.82% 9.30ms

Table 1: Means of the accuracies, single beat percentages and consistencies on 9
ECG signals for the HMM, HSMM, SME decomposition and EHMM methods.

Method Accuracy Single beat percentage Consistency
HSMM 0.20% 2.83% 0.17ms

HMM+SME 0.40% 2.74% 0.53ms
EHMM 0.29% −0.52% 0.41ms

Table 2: Means of the improvements in accuracies, single beat percentages and
consistencies on 9 ECG signals for the HSMM, SME decomposition and EHMM
methods w.r.t the results obtained with the HMM method.
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