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Abstract. In the field of image analysis, denoising is an important preprocess-
ing task. The design of an efficient, robust, and computationally effective edge-
preserving denoising algorithm is a widely studied, and yet unsolved problem. One
of the most efficient edge-preserving denoising algorithms is the bilateral filter,
which is an intuitive generalization of the local M-smoother. In this paper, we pro-
pose to modify both the bilateral filter and the local M-smoother to use patches of
the image instead of single pixels in the denoising process. With this modification,
the filtering effet becomes more sensitive to the different areas of the image and
the filtering results improve. The denoising quality of these patch-based filters is
evaluated on test images and compared to the classical bilateral filtering and local
M-smoother.

1 Introduction

Nowadays, digital images are used in many fields of application (ranging from multi-
media home applications to professional ones in medicine, security, or geography, for
instance). However, these images often come from an acquisition process that produces
noise and blur on the resulting image. These artifacts can lead to misinterpretations,
lower the confidence in the images, or even lead to a suboptimal decision making.
Therefore, attenuating noise and blur with appropriate tools proves to be mandatory
before any further image analysis.

In denoising algorithms, the challenge is to identify as accurately as possible the
noisefree signal in the image. In particular, imperfect noise removal could possibly
damage fine textures and region edges. Most denoising tools are indeed filters that trim
high frequencies of the measured signal; suboptimal parameter tuning might thus blur
the signal, which is obviously a highly undesired adverse effect. Denoising tools that
can attenuate noise with minimal blurring are often said to be edge-preserving.

Unsupervised edge-preserving denoising of images can be achieved with various
paradigms: partial differential equations [1], Bayesian denoising [2], kernel regres-
sion [3], gradient approximation [4], total variation [5], wavelet transform [6], density
approximation, and robust statistics. As they basically achieve some sort of mode iden-
tification, the local M-smoother [7] (LMS) and bilateral filtering [8] (BF) can easily be
cast within the two last paradigms. Because of their intuitive formulation, low computa-
tional cost, and global efficiency, BF and LMS have been quite popular options among
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researchers and practitioners. Still, their intrinsic design makes them optimal only for
piecewise constant signals. In any other case, such as ramps or even slight edge blur,
their performance significantly drop, because modes of the signal tend to be less clearly
separated.

This paper aims at adapting BF and LMS in order to use groups of adjacent pix-
els in the image, called patches, instead of single pixels. Replacing scalar values with
multidimensional information such as patches in the mode identification process hope-
fully digs the gaps between modes. Hence, the denoising process should also be more
accurate. Patch-based denoising has already been investigated by Kervrann [9], [10].
His approach produces good results but relies on empirical arguments and does not take
into account the distance between the pixels of a patch. The consequence is that results
around edges critically depend of the size of the selected patches which can lead to
lower performances in these areas.

The remainder of this paper is organized as follows. Section 2 will briefly introduce
the local M-smoother and bilateral filtering, before moving to their extension to patches.
The benchmark images used to assess the denoising quality are introduced in Section
3, along with other aspects the experimental setup. Section 4 presents and comments
the results. Finally, Section 5 draws the conclusions and sketches some directions for
future work.

2 Image Model and Patch-Based Filtering

2.1 Image Model

Let us define a D-dimensional image as a vector of pixels in which the ith pixel position
can be uniquely identified by vector xi = [xi1, . . . ,xiD]T . The pixel at coordinate xi has
an observed intensity fi = ui +εi which consists of the noisefree signal ui and the noise
component εi. In the following developments, we assume that all noise components εi
are Gaussian and i.i.d.

2.2 Local M-Smoother and Bilateral Filter

The derivations of the LMS and BF within the framework of mode identification are
detailed in [7] and [11], for instance. The objective function is

E(u) =
P

∑
i=1

∑
j∈Ni

wi jΨ

(
−1

2
(ui− f j)2

)
, (1)

where P is the number of pixels, Ni is the neighborhood of xi and wi j = exp(− (xi−x j)2

2ρ2 )
is a spatial weight. The radiometric kernel Ψ(v) = exp(− u

2σ2 ) plays the same role as
in a Parzen window estimator. Maximizing E(u) can be achieved with a fixed-point
strategy and leads to the update rule
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which is initialized with û0
i = fi. As can be seen, the local M-smoother performs a

weighted average of the surrounding pixel values, in order to obtain the filtered value of
a given pixel. The global weights are thus the products of both spatial and radiometric
kernels, which makes them adaptive and anisotropic.

Bilateral filtering is an intuitive generalization of the LMS. In bilateral filtering, the
noisy values f j are replaced in the update rule with the filtered values uk

j, which are
assumed to be better estimates of the noisefree data. This leads to

ûk+1
i =

∑ j∈Ni wi jΨ
′
(

1
2 (ûk

i − ûk
j)

2
)

ûk
j

∑ j∈Ni wi jΨ′
(

1
2 (ûk

i − ûk
j)2

) , (3)

with the same initialization as for the LMS. This modification also means that the filter
becomes nonlocal after the first update, as the intensities that were out of the neighbor-
hood of ûk

i have been involved in the determination of ûk
j at a previous step. Because of

this diffusion process, BF can converge to a constant image and has to be stopped after
a few iterations.

2.3 Patch-Based Bilateral Filter

Each pixel of an image can be interpreted as the realization of a random variable with
some expected value. The LMS and BF rely on the idea that the pixel realizations are
locally distributed among one or several clearly separated modes. The use of patches
is motivated by the observation that it is usually easier to identify modes in a multidi-
mensional space, as the risk of overlapping is lower. For this purpose, if D is the image
dimensionality, let us define patch Pk

i as the subset of pD pixel values at iteration k, cen-
tered on xi. Patch-based bilateral filtering (PBBF) calculates the weights between the
pixels in xi and x j using d(Pi,Pj), the distance between patches Pi and Pj. The PBBF
update rule is then written as

ûk+1
i =

∑ j∈Ni wi jΨ
′
(
(d(Pk

j ,P
k
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)
ûk
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The choice of a particular distance function can be guided by the noise model or other
properties of the image. A classical option is the L2 distance

d(Pk
j ,P

k
i ) =

√√√√ pD

∑
n=1

(Pk
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in)
2 , (5)

where Pk
jn is the nth pixel in patch Pk

j .
Patches can be introduced in the LMS as well. In this case, the update rule for the

patch-based local M-smoother (PBLMS) is written as
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Here the patch centered on xi contains values from the original image f . If the patch size
is set to 1 and the chosen distance is L2, the PBBF and PBLMS algorithms obviously
reduce to the classical BF and LMS, respectively.

3 Databases and Experimental Design

3.1 Databases

Performance assessement is achieved using a set of digital pictures1 that is widely used
in the literature ([12], [13], [14] and [15]). The images contain 5122 pixels with values
between 0 and 255. All images have been polluted by i.i.d. additive Gaussian noise
with standard deviations of 5, 10, and 20.

3.2 Experimental design

For each filter, the filter parameters ρ and σ have been optimized with a training im-
age. Next, denoising performances have been evaluated 50 times on the same image
polluted with noise following the same noise model that the one used to generate the
training image. This methodology has been used for the PBBF, PBLMS, BF, and LMS.
The parameters ρ and σ have been optimized for 1 to 15 iterations, which means 15
experiments for each algorithm, image, and noise model. For each image and noise
model, the best performances have been selected in each set of 15 experiments. The
patch-to-patch distance is the L2 distance.

The denoising performances are evaluated with the root mean square error, defined
as

RMSE =

√
1
M

M

∑
m=1

1
I

I

∑
i=1

(ûk
i −ui)2 , (7)

where M is the number of denoising trials, m is the trial index, I is the total number of
pixels in the image and i the pixel index.

4 Results

The denoising results are given in Table 1. In terms of RMSE, the patch-based filters
outperform the classical LMS and BF algorithms. For all noise models, the best results
are given either by the PBBF or PBLMS depending of the image. The variance of the
RMSE over the trials is of the same order of magnitude for all filters and proves to
be small very small with respect to the corresponding RMSE values. Typical results
are illustrated in Fig. 1. These images are samples of the original Lena image which
was analyzed. Although all filters correctly preserve edges, the images obtained with
patch-based filters look less noisy than those computed by classical filters. Moreover,
fine details appear to be more salient.

1Available at http://decsai.ugr.es/∼javier/denoise/test images/index.htm.
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noise std 5 10 20
Lena mRMSE vRMSE mRMSE vRMSE mRMSE vRMSE
LMS 3.3728 3.7430.10−5 5.2371 8.3978.10−5 8.2675 3.2041.10−4

BF 3.3724 3.2498.10−5 5.1428 1.0774.10−4 7.4586 3.6691.10−4

PBLMS 3.1642 3.0059.10−5 4.6202 8.0814.10−5 6.7656 4.3030.10−4

PBBF 3.1642 2.0347.10−5 4.6055 1.1671.10−4 6.6330 5.3355.10−4

Barbara mRMSE vRMSE mRMSE vRMSE mRMSE vRMSE
LMS 4.0035 4.3394.10−5 6.9220 1.7707.10−4 11.731 5.1862.10−4

BF 4.0047 5.6820.10−5 6.9176 1.8908.10−4 11.526 4.8474.10−4

PBLMS 3.5672 5.3594.10−5 5.8781 1.2557.10−4 9.2186 5.9284.10−4

PBBF 3.5673 2.7393.10−5 5.8776 1.3783.10−4 9.2703 6.6194.10−4

Boat mRMSE vRMSE mRMSE vRMSE mRMSE vRMSE
LMS 3.9298 3.0525.10−5 6.1785 1.1108.10−4 9.5849 3.3252.10−4

BF 3.8959 3.8741.10−5 6.0238 1.1891.10−4 8.8940 3.4878.10−4

PBLMS 3.8026 3.2754.10−5 5.6561 1.1671.10−4 8.3808 4.1329.10−4

PBBF 3.8011 2.2535.10−5 5.6688 1.2218.10−4 8.2600 3.8027.10−4

House mRMSE vRMSE mRMSE vRMSE mRMSE vRMSE
LMS 3.3561 7.7022.10−5 5.1959 6.8212.10−4 8.5771 1.2275.10−3

BF 3.2924 8.9099.10−5 5.0704 5.0182.10−4 7.5748 1.5632.10−3

PBLMS 3.1979 1.3145.10−4 4.6722 6.7429.10−4 6.8100 2.4467.10−3

PBBF 3.1555 1.0939.10−4 4.5479 4.7471.10−4 6.4854 2.8182.10−3

Table 1: Averaged RMSE results for 50 images polluted with the same noise model (additive
i.i.d. Gaussian noise with standard deviation 5,10 or 20) ’mRMSE’ is the mean RMSE for the 50
images, and ’vRMSE’ is the variance of the RMSE over those images.

Fig. 1: Example of the Lena image. Top row, left: original image, middle: bilateral filtering,
right: patch-based bilateral filtering. Bottom row, left: noisy image, middle: local M-smoother,
right: patch-based local M-smoother.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



5 Conclusions

The introduction of patches in the classical bilateral filter and local M-smoother algo-
rithms relies on the idea that a filter whose weights are based on vector comparison
rather than scalar ones is able to better separate signal modes. Our experiments show
that the patch-based filters outperforms bilateral filtering and the local M-smoother both
in terms of RMSE and of visual inspection. Future work will focus on more complex
noise models and will investigate other patch-to-patch distance functions.
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