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Abstract. The fiddler crabs, Uca lactea, which live on intertidal mud-
flats, exhibit a remarkable ability to return to its burrow. It has been
reported that the species usually use path integration, an ideothetic mech-
anism for short-range homing. During the mating season, however, the ac-
cumulation error of the process increases due to vigorous courtship move-
ment. To compensate for this, most courting males construct the vertical
mud structures, called semidomes, at the entrance of their burrows and
use them as landmarks. Here, we suggest a possible neural model that
demonstrates how visual landmark navigation could be implemented in
the fiddler crab’s central nervous system. The model consisting of two
levels of population of neurons, is based on the snapshot hypothesis and
a simplified version of Franz’s algorithm is used for the computation of
home vector.

1 Introduction

Animals make use of various mechanisms to find their home after foraging far
away or searching for mating partners. For example, fiddler crabs Uca lactea
(Fig.1) highly depend on path integration, an ideothetic mechanism in their
short-range homing. The expression short-range means excursions of up to 30
cm from their burrows [1]. They achieve this by calculating an egocentric home
vector by maintaining their transverse body axis pointing to burrows [6], and
using leg odometry [7]. During courting, however, the direction of males trans-
verse body axis deviates from that of their home vectors when they intensively
court females. Thus, it has been suggested that male-building structures (in the
form of semidomes) might be used as landmarks [5].

If it is true that male fiddler crabs utilize semidomes as visual landmarks
when they return to their burrows, we can consider an analogy to the landmark
navigation problem found in other insect foragers such as bees and ants. The
visual homing abilities of those animals may be well explained by the snapshot
hypothesis. It claims that animals can decide homing movement and ultimately
reach their home by continuously comparing the current retinal image with a
snapshot taken at their nest. Cartwright and Collett suggested this snapshot

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



model [2], and later other researchers [4, 3] showed further works following the
snapshot model.

The snapshot model showed its experimental reproduction of behavioural
patterns found in real animals, but there has been no research what kind of
neural mechanism underlies the matching procedure. Thus, in this paper, we
suggest a neural model of landmark navigation for the fiddler crab U. lactea. The
fiddler crab is an intriguing species for the landmark navigation. Many animals
utilize visual landmarks available around their home nest, and it is believed
that fiddler crabs are building a small semidome-style object to design a salient
feature of visual landmark in their habitat of mudflat.

Fig. 1: Male Uca lactea with a semidome (by courtesy of T.W. Kim [5])

2 Mathematical description of the homing scheme

Following the snapshot model, Franz et al. [3] suggested a new scene-based
homing algorithm which assumes that all surrounding landmarks have identical
distances from the location of the snapshot. We can apply the algorithm to the
landmark navigation of a fiddler crab, which requires three parameters, α, θ, ρ,
in the following equation:

tan δ =
(d/R) sin(θ − α)

1 − (d/R) cos(θ − α)
=

ρ sin(θ − α)

1 − ρ cos(θ − α)
(1)

where θ is an angle of a landmark, that is, semidome, relative to the light
compass, α is a possible movement angle of a crab, δ is the displacement angle
of landmark image, d is the moving distance and R is the distance between the
current location and the landmark, and ρ = d/R is the ratio. It is assumed that
all the landmarks have equal distances away from the current location. With
the estimated displacement angle, the corresponding images are generated and
compared with the snapshop at nest.

Fig.2(a) shows a geometric relationship in an agent’s homing navigation situ-
ation. In fact, the line of the horizon in the habitat and the pattern of polarized
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skylight help them control the orientation of their eyes and their bodies [6]. The
visual system of fiddler crabs has a panoramic visual field and well tuned to the
geometry of vision in the flat world. Here, we assume that the agent uses the
light compass, unlike Franz et al.’s approach [3]. The landmark image direc-
tion is estimated with reference to the light compass. Thus, we do not have to
consider the agent’s orientation for image displacements.

The homing scheme is a procedural algorithm to estimate the homing direc-
tion. It considers all possible angles for movement and evaluates all the image
displacements for every angle of movement. Then it determines the angle in
which the image displacement best matches the snapshot taken at the nest.
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Fig. 2: Image displacements (a) geometry with landmark parameters (modified
from [3]); viewing angle of a landmark is changed depending on the moving
direction α with distance d (agent moved from C to P ) (b) image displacement
δ depending on each moving direction.

Before establishing the neural model, equation (1) is simplified in two steps.
First, we assume that fiddler crabs use light compass and so the orientation angle
(head angle) does not influence the image displacement, since all the landmarks
can be described with respect to the compass reference. Second, if the ratio
ρ = d/R is lower than 0.1, then equation (1) can be approximated with

δ ≃ k cos(γ − π/2)

where k is a constant and γ = θ − α.
Fig.3 shows the image displacement δ depending on the changes of the pa-

rameter α (that is, the moving direction), depending on the ratio ρ. The ratio
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Fig. 3: Estimation of landmark (relationship between image displacement δ and
moving direction α depending on ρ) (a) θ = 90◦ (b) θ = 180◦

ρ = d/R greatly influences the curve of image displacement. Interestingly, the
equation (1) follows a cosine tuning curve for small ρ, which is also derived above.
Based on this result, we can build a neural model to process the image displace-
ments in parallel for every moving direction. From the image displacements, a
predictive model of image for each direction can be generated and further, this
image can be compared with the snapshot near the nest.

3 Neural Snapshot Model

If we assume a population coding for image displacement for every α, the pro-
cedural algorithm for the snapshot model can be simplified to a neural imple-
mentation in parallel. A neuron may be assigned for image displacement at
each angle α. A collection of the image displacement neurons has a population
coding, following a cosine tuning curve. According to the population coding
method, a population of neurons represent the perceptual vector or quantity.
The weighted average of the neuron activations in the preferred directions can
determine the perception vector. Here, a population of image displacements
itself is not directly related to the homing scheme with snapshop model.

For our neural snapshop model, we can build a predictive image vector of
landmarks from the image displacement for every moving direction (number of
directions can be selected appropriately). If several landmarks are available,
these image cells record the image displacements of multiple landmarks for a
given movement angle α. Then each predictive image is compared with the
snapshot image taken near the nest in parallel. The matching between the im-
age and the snapshot at nest can be simply implemented with neurons (it has
a form of sum of product operations, when the image is represented in binary
form). For the homing direction, we choose the movement angle which can lead
to the highest activation in the matching. Here, for several landmarks, each
image for a possible movement angle is represented by a collection of neurons to
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record the predictive image displacement, for example, a kind of ring structure
demonstrated in Cartwright and Collet’s works [2]. As a result, two levels of
population of neurons should be available to handle the snapshot image match-
ing. The lower level is a collection of predictive images and the higher level
handles a comparison between the snapshot and each predictive image. This
neural representation can also be applied to the landmark navigation of other
animals.

With the engineering term, it corresponds to a discrete convolution of snap-
shot images.

max
k

(f ∗ g)[k] =
N∑

m=0

f(
m

2πN
) · g(

k − m

2πN
)

where f(·) is the snapshot image near the nest and g(·) is the predictive image
for every possible movement. Here, we assume N images are compared with
the snapshot at nest. The above function will find the best matching direction
among N possible moves. At the image matching level, a population of neurons
which covers the full range of directions, will determine the best direction in
terms of matching criterion.

We simulated the above algorithm with landmark navigation. We used 32
neurons for directional neurons, and each image cell for both the predictive
image and the snapshot at nest has a resolution of 1 degree. The higher level
of neuron coding for image matching with the snapshot, will choose the best
direction among a population of 32 image-matching neurons. Fig. 4(a) shows
the snapshot image near the nest and Fig. 4(b) displays the best matching
directions at various locations with five rounds-shaped landmarks, where (0,0)
is the nest position that an agent starts to move from. After exploring in the
arena, the agent should return to the nest position. As Franz et al. [3] pointed
out, there is a catchment area to show reasonable homing directions, often inside
a group of landmarks. Thus, the navigation should use a combinational model
with egocentric information such as path integration.

4 Conclusion

In this paper, we suggest a possible neural model that demonstrates how visual
landmark navigation could be implemented in the fiddler crab’s central nervous
system. The model follows image warping method suggested by Franz et al. [3]
with the assumption of equal landmark distance. The image matching problem
uses only snapshot images without any reference compass. Our neural model is
based on the light compass reference and a population of neurons process all the
image estimations and matchings in parallel. Thus, the complex image matching
process known as a procedural task can be represented with simplified neural
coding. The model consists of two levels of population of neurons, where the
lower level predicts landmark images for possible movement directions, and the
higher level matches the stored snapshot image near the nest and the predictive
image corresponding to each possible movement angle. The above neural mech-
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Fig. 4: Landmark navigation; (0,0) is the nest position and larger arrow indicates
closer matching with the snapshot (left: snapshot image near the nest, right: best
directions selected at each location)

anism can be applied to landmark navigation of other animals and also we can
consider it for an image-based robotic navigation with fast response.
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