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Abstract : A feed-forward neural network is proposed for monitoring operating 
modes of large scale processes. A Gaussian hidden layer associated with a 
Kohonen output layer map the principal features of measurements of state 
variables. Subsets of selective neurons are generated into the hidden layer by 
means of self adapting of centers and dispersions parameters of the Gaussian 
functions. The output layer operates like a data fusion operator by means of 
adapting the hidden-to-output matrix of weights through a winner takes all 
strategy. The algorithm is tested with the Tennessee Eastman Challenge 
Process. The results prove that the proposed neural network clearly maps the 
different operating modes. 

 
 
1  Introduction 
 
Due to the complexity of industrial processes, and the need to ensure production 
quality and reliability, engineers have to develop complex monitoring strategies. The 
frequently used strategies are principal component analysis or partial least-squares 
analysis. These methods strongly depend on data characteristics. Analytical 
approaches like parameter estimation and observer-based method can also be used 
when a detailed mathematical model of the process is available. For large and 
multivariate data base and when no model is available, fuzzy or neural methods can 
be implemented [1, 2, 3, 4]. 

In this paper a multilayer neural network is developed for monitoring operating 
modes of large scale industrial processes. The main objective of the proposed work is 
the conception of a selective processing tool for the transformation of a large time 
varying data base into a two dimensional map representative of the operating mode of 
an industrial process.  

The network is feed-forward and its structure consists of three successive layers. 
The input layer carries out the data-gathering. Then a hidden layer, made of self-
tuning Gaussian functions, performs a data selection and finally a Kohonen mapping 
is performed through the output layer. Such transformation that allows us to identify 
the operating mode should be seen as a preliminary step to perturbation or fault 
detection and to identification. 

The simulations of the monitoring of the Tennessee Eastman Challenge Process 
operating mode, point out the performances of the proposed algorithm. 
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2  Network structure and learning algorithm for monitoring 
 
The proposed feed-forward structure consists of three layers (fig. 1). The input layer 
gathers the data to be mapped. The data are the time varying delayed measurements of 
N state variables of a large scale process.  

The hidden layer adapts itself in such a way that the different operating modes of 
the process are associated with a subset of neurones. Each subset can be considered  
as a signature of a particular operating mode. 

The self-organising output layer, inspired from Kohonen neural network, maps 
the data into a two dimensional representation. The features of the resulting output 
representation  are representative of the current operating mode.  
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Fig 1. Neural network structure for data mapping 
 

2.1 Input layer 
 
The input of the network is a two dimensional layer. The number N of rows of this 
layer equals the number of the different measured variables. In the row k, the first 
neuron receives the measurement of the variable Xk at time t, Xk1=Xk(t). The neuron j 
(j=2,..,m) receives delayed measurement Xkj of the same variable,  Xkj=Xk(t-j+1).  
 
2.2 Hidden layer  
 
This layer is composed of Gaussian functions centered on Ckj with a dispersion σkj.  
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The entry Sk of this function corresponds to the mean value of the m inputs of 
the row k of the input layer. It results a reduction of the sensitivity to measurement 
noises. 
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The initial value of the centers associated with each neuron are divided from the 
min to the max value of the considered input variable. Initial values of the dispersion 
parameters are chosen equal to the difference between two successive centers. 
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The self-adapting algorithm consists in modifying the center and the dispersion 
of the winner neuron after a lateral excitation/inhibition process of each row at each 
time t:                         { }m,..,1q,Hmaxargjand,N,..,1kfor kq ===
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The initial values lead to a fair distribution of the centers of the Gaussian 

functions into the interval . The adaptive algorithm makes the neurons 
more selective as the learning phase progresses. To avoid excessive influence of noise 
measurement on the adaptation of hidden units, a lower bound  is set, α is an 
arbitrary coefficient. In order to set the output of the hidden neurons to finite values, 
each row is normalised at each step time. Steady states of the measured variables 
characteristic of the operating modes are progressively associated with a set of 
neurons in the hidden layer. More often they are winners, more selective neurons 
become. Once the learning stage is completed, each row of the hidden layer is divided 
into several subsets of neurons associated with a particular operating mode. 
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2.3 Mapping output layer 
 
The output layer is a NsxNs matrix randomly initialised. The output mapping M={Mkq; 
k=1,..,Ns; q=1,..,Ns} is performed by linear neurons associated with a process of 
lateral excitation-inhibition and a winner takes all algorithm. 

Let r defines the radius of the excitation neighbourhood, neurons inside this 
neighbourhood are excitatory neurons and those outside are inhibitors. 
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where k' and q' are such that ( ) ( )22 'qq'kkd −+−=  

The weights are randomly initialised into [-1,+1], δkq
lhF 1 and δ2 are respectively  

an arbitrary positive coefficient for excitatory neurons and negative one for inhibitors. 
At each step time, the output values are included into the interval [-1,+1]. 

 
M=M/max{abs(Mkq); k=1,..,Ns; q=1,..,Ns} 

 
The winner takes all algorithm is:  
for (i,j) such as { }m,..,1q;m,..,1k;MmaxM kqij === , and for u=1,..,N,  

and v such as { }m,..,1z,HmaxH uzuv == , 
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During the learning phase, the weights of the links from subsets of the hidden 

layer associated with the different operating mode of the process adapt themselves. 
The result is a mapping of the outputs such  that particular features are associated with 
each operating mode. 

 
3  Tennessee Eastman Challenge Process (TECP) simulation 
 
The TECP is a simulating tool proposed to the community of engineers and scientists 
by the Eastman Corporation [5, 6]. It consists of a chemical reactor, a separator, a 
stripper, a condenser and a compressor. It comprises 50 state variables, 41 measured 
variables and 12 manipulated variables. It was developed and studied by numerous 
engineers and researchers working in modelling and control area [7-10]. The 7 
operating modes are precisely described in [9, 10]. These modes are defined for 
different mass ratio R=G/H, where G and H stand for the rates of output products, and 
for different objectives such as purge rate minimisation, production cost 
minimisation, etc… 

In that work, stabilisation and control of the TECP is achieved using a neural 
controller previously developed by our laboratory [11-13]. For the monitoring 
approach, 4 variables were chosen (temperature and pressure of the reactor, 
temperature and pressure of the separator).  

A 80 hours learning phase is performed which consists of 8 successive 
transitions between 3 different modes: mode 0 (base case R=50/50) , mode 1 
(R=50/50; minimum operating cost) and mode 2 (R=10/90; minimum operating cost) 
(table 1). The learning parameters are arbitrarily set to: r=2  ; δ1=0.1 for excitatory 
neurons and  δ2 = -0.005 for inhibitors, μ = 0.01, α = 10 . The sampling period during 
simulation is 0.02 h. 

 
Time (h) 0-3 3-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 

mode 0 2 0 1 2 1 0 2 0 
Table 1 : Operating mode sequence 1 for learning stage 

 
4 Results 
 
While the network is learning, center of Gaussian functions of each hidden neuron 
moves to get closer to one of the steady state values of the process. Subsets of neurons 
provide a specific signature for each steady state (fig. 2). Decreasing the dispersion 
parameters makes each neuron more sensitive to the input values in a very narrow 
neighbourhood. 

After learning has been completed, a running stage for the learning data base 
(sequence 1) demonstrates the ability of the system to distinguish the different 
operating modes. When the steady state becomes the same, the output map presents 
features very close to each other (fig. 3).  

Then a second operating mode monitoring is simulated with sequence 2 (table 
2). Using maps of fig 3, three representative matrices (M0, M1, M2), are selected as 
signatures of the different operating modes. Performance is evaluated by comparisons 
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between the output map M and M0, M1 and M2. At each step time three square errors 
E0, E1 and E2 are computed between M and respectively M0, M1 and M2. The 
current output map M is labelled 0, 1 or 2 by selecting the lowest value among E0, E1 
and E2 (fig.4). The mode 0 is perfectly identify while during mode 1, 52% 
misclassifications into mode 2 are observed and for mode 2, 6% misclassifications 
into mode 1 are observed. This misclassifications are principally due to the fact that 
the chosen measurement variables during mode 1 and 2 present very nearest mean 
values. 
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         (a)     (b) 
Fig 2. Example of neuron gathering in Gaussian layer. Neurons associated with the reactor 
pressure measurements, the pressure scale is [2600 kPa, 2950 kPa]. (a) after 3h learning. (b) 
after 80h learning. The number attached to each curve corresponds to the number of the 
corresponding neuron on the hidden layer. 

 
    (a) 3h, mode 0         (b) 10h, mode 2        (c) 20h, mode 0        (d) 30h, mode 1       (e) 40h, mode 2 

 
     (f) 50h, mode 1       (g) 60h, mode 0          (h) 70h, mode 2         (i) 80h, mode 0  
 

Fig 3. Output layer mapping for the learning data base. 
 

Time (h) 0-5 5-20 20-50 50-70 70-100 100-130 130-160 
mode 0 1 0 2 1 0 2 

Table 2 : Operating mode sequence 2 for running stage 
 

 
Fig 4. Real time identification of the operating mode at each step time for sequence 2 
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5  Conclusion 
 

A multilayer neural network was developed for industrial process operating 
mode monitoring. The main objective of this work is the conception of a selective 
processing tool for the transformation of a large time varying data base into a two 
dimensional mapping of the operating mode.  

The three layers feed-forward network consists of an input layer that carries out 
the data-gathering, a hidden layer made of self-tuning Gaussian functions that 
performs a data selection and finally a Kohonen mapping through the output layer. 

Simulation of the monitoring of the different operating modes of the Tennessee 
Eastman Challenge Process points out performances of the proposed algorithm. 

This transformation performs a labelling of the operating mode and for that 
reason can be considered as a first step for a larger processing tool for perturbation 
and/or fault detection and identification. Our future work will consist of an extension 
of the methods to larger data base to avoid misclassifications and then, disturbance 
detection will also be studied. 
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