
TreeESN: a Preliminary Experimental Analysis

Claudio Gallicchio and Alessio Micheli

Department of Computer Science - University of Pisa
Largo B. Pontecorvo, 3 56127 - Italy

Abstract.

In this paper we introduce an efficient approach to Recursive Neural Net-
works (RecNNs) modeling, the Tree Echo State Network (TreeESN), ex-
tending the Echo State Network (ESN) model from sequential to tree
structured domains processing. For structure-to-element transductions,
the state mapping (i.e. the way in which the state values for the whole
structure are selected/collected) turns out to have a relevant role and the
importance of its choice is pointed out by experimental results.

1 Introduction

Echo State Networks (ESNs) [1, 2] constitute an efficient approach for Recurrent
Neural Networks (RNNs) modeling. ESNs typically consist in a large non-linear
reservoir hidden layer of recurrent units connected to a linear readout layer.
Only the readout is trained (e.g. by efficient linear regression), while the reservoir
implements a fixed contractive state transition function.

Recursive Neural Networks (RecNNs) [3, 4] represent a generalization of
RNNs for processing structured domains (SDs). Training RecNNs may be even
more computationally expensive than training RNNs. It is therefore interesting
to investigate efficient approaches to RecNNs modeling. Preliminary theoreti-
cal results on RecNNs implementing contractive state transition mappings and
related Markovian effects [5] on network dynamics have been proposed in [6].
Inspired by the ESN approach, in this paper we introduce a neural networks
model for processing tree SDs named the Tree Echo State Network (TreeESN).

2 TreeESNs for Tree Domain Processing

In the following, a rooted tree structure is represented by t. Children of a
node n in t are represented by ch1(n), . . . , chk(n), where k is the ariety of t.
If the i-th child of n is not present, then chi(n) = nil. If n is a leaf node
chi(n) = nil ∀i = 1, . . . , k. The label information associated to node n is
denoted by u(n). The set of trees with node labels in R

NU and ariety k is
indicated by (RNU)#k, while (RNU)# is used if the ariety is not specified.

We are interested in computing transductions on tree SDs. A tree trans-
duction is a function mapping an input tree SD into an output tree SD, T :
(RNU)# → (RNO)#, where (RNU)# denotes the input set of trees with node
labels in the (vectorial) real input space R

NU and (RNO)# is the set of trees
with node labels in the (vectorial) real output space R

NO .
In a tree-to-tree transduction T the output is always isomorphic to the input

structure, i.e. T associates an output node for each node of the input tree. T is

333

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

said a tree-to-element (or structure-to-element) transduction if a single output
element is computed in correspondence of an input tree, in this case the output
domain reduces to a real subspace. T is said a causal transduction if the value
computed for each node n depends on the node itself, its associated label u(n)
and the descendants of n. In a stationary transduction T , the function applied by
T does not depend on the node to which it is applied. An adaptive transduction
is learned from observed data and not a-priori fixed. A tree transduction T can
be usefully decomposed as T = ĝ◦τ̂ , where τ̂ is the encoding function and ĝ is the
output function. The encoding function τ̂ : (RNU)# → (RNR)# maps the tree
input domain into a tree structured feature space (RNR)#, where R

NR is a real
feature space. The output function ĝ maps the tree feature representation into
the output space: ĝ : (RNR)# → (RNO)#. Causal functions τ̂ can be computed
by using a node-applied recursive function τ : R

NU × (RNR)k → R
NR , where

(RNR)k for each node represents the contextual information corresponding to
the set of features in R

NR computed for its children. Analogously, function ĝ
can be computed by using a node-applied readout function g : R

NR → R
NO .

A TreeESN is a RecNN model implementing causal, stationary and partially
adaptive tree transductions: it consists in a large hidden reservoir layer of NR

recursive neurons implementing a fixed encoding function plus a linear readout
layer implementing an adaptive output function. The node-applied function τ
is the reservoir state transition function, computed as:

x(n) = τ(u(n),x(ch1(n)), . . . ,x(chk(n)) = f(Winu(n)+
k∑

i=1

Ŵix(chi(n))) (1)

where x(n) ∈ R
NR is the state (i.e. the feature representation) computed for

node n and x(chi(n)) is the state computed for the i − th child of n, with
x(nil) = 0 ∈ R

NR . Matrix Win is the input-to-reservoir weight matrix, while
Ŵi denotes the recurrent reservoir weight matrix for child i. As non-linear ac-
tivation function f we use tanh. The states computed for the children of a node
n can be concatenated into a context state xc(n) = [x(ch1(n)); . . . ;x(chk(n))] ∈
R

kNR . Analogously, the recurrent weight matrices can be arranged into a global
matrix Ŵ = [Ŵ1 . . .Ŵk] ∈ R

NR×kNR , such that x(n) = τ(u(n),xc(n)) =
f(Winu(n)+Ŵxc(n)). The readout function g is computed by the linear read-
out layer. For tree-to-tree transductions the output is computed for every node
n as y(n) = g(x(n)) = Woutx(n). For structure-to-element transductions a
state mapping function X : (RNR)# → R

NR is preliminary used to map the
structured feature representation computed for the whole input structure into a
fixed-size state representation. In this case the output is computed for the whole
input tree t as y(t) = g(X (τ̂(t))) = WoutX (τ̂(t)). The standard RecNN choice
for X is a root state mapping, consisting in selecting the state of the root node
of the input tree. Another possible implementation of X , used in the following
and proposed in [7], is a mean state mapping, evaluating the mean value among
all the states computed for the nodes in the input tree.

As in standard ESNs, the reservoir of a TreeESN is left untrained after ini-
tialization (i.e. Win and Ŵ are fixed) and the linear readout is adapted through

334

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

linear regression (i.e. Wout is learned). The reservoir transition function is ini-
tialized to be a contraction, i.e. ∃C ∈ (0, 1) s.t. for every couple of context states
xc,x′

c and input label u, ‖τ(u,xc)−τ(u,x′
c)‖ ≤ C‖xc−x′

c‖ holds. Using the Eu-
clidean norm and for tanh activation function, the contractivity condition is sat-
isfied for ‖Ŵ‖2 < 1. In fact, in this case ‖τ(u,xc)−τ(u,x′

c)‖2 = ‖tanh(Winu+
Ŵxc) − tanh(Winu + Ŵx′

c)‖2 ≤ ‖Ŵ(xc − x′
c)‖2 ≤ ‖Ŵ‖2‖xc − x′

c‖2. ‖Ŵ‖2 is
denoted by σ and is called the contraction coefficient of the TreeESN as it rules
the contractivity (at least in the Euclidean norm) of its state transition function.
Note that the value of σ is equal to the maximum singular value of matrix Ŵ.
Matrix Ŵ is randomly initialized and then scaled to the desired value of σ as
for ESNs. The contractive setting of RecNN state transition functions involves
a Markovian organization of the network state dynamics [6] which applies to
TreeESNs (with root state mapping) as well. As a consequence, more similar
network states correspond to different input structures sharing a larger common
suffix (i.e. a common top subtree starting from the root).

Note that if the input domain reduces to a sequential domain, the TreeESN
model with root state mapping reduces to a standard ESN.

3 Experiments

We applied the TreeESN model on two benchmark tasks related to structure-
to-element transductions. The first one is a Quantitative Structure-Property
Relationship (QSPR) analysis of alkanes [4, 7], to which RecNNs and other neu-
ral networks models for SDs have been successfully applied (see [7] and references
therein). The task consists in predicting the boiling point (measured in Celsius
degrees, oC) of the alkanes on the basis of tree representations composed by the
Carbon atoms (with k = 3), whereas the input dataset contains 150 molecules.
A 10 fold cross-validation method was used for training and testing.

The second task is a predictive task on a sequential symbolic domain, with
Markovian/anti-Markovian flavor, to which ESNs have been applied in [8]. In
this case input trees reduce to input sequences (i.e. k = 1), involving a temporal
dimension such that the root node corresponds to the most recent input symbol.
Elements of the input sequences are randomly chosen from a uniform distribution
over a numerical representation of the symbolic alphabet {a, . . . , j}, such that
a is represented by 0.1 and so on up to j represented by 1.0. The target value
associated to an input sequence t depends on a parameter λ > 0, which controls
the degree of Markovianity/anti-Markovianity of the task. The target value is
computed as: ŷ(t) =

∑
i

u(i)
λi and normalized in [−1, 1], where the sum spans

over the set of nodes in the input structure for increasing values of i. For
Markovian sequences the target ŷ(t) is obtained by scanning input nodes from
the root to the leaf, such that more similar target values are associated to input
sequences with more similar suffixes. A larger value of λ implies a stronger
Markovian characterization of the target. For anti-Markovian sequences, the
target is obtained by scanning the input sequence in the opposite direction,

335

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

leading to an anti-Markovian characterization of the target controlled by the
value of λ. For the Markovian and the anti-Markovian tasks, training and test
sets contain respectively 500 and 100 sequences, of length between 50 and 100.

We tested TreeESNs with σ varying between 0.1 and 1.4. We used full con-
nected reservoirs, with dimension (NR) set to 500 for the alkanes task and to 100
for the Markovian/anti-Markovian sequences task. Win values were randomly
chosen from a uniform distribution over [−1, 1]. Values in Ŵ were initialized in
the same way and such that its sub-matrices Ŵ1, . . . ,Ŵk were all identical. Ŵ
was then rescaled to the desired value of σ. For the alkanes task a uniform noise
of size 10−5 was added to the input for the readout before training. Error mea-
sures reported were averaged over 30 and 10 independent trials for the alkanes
and the Markovian/anti-Markovian sequences tasks, respectively.

Fig. 1 shows the mean absolute test error on the alkanes task obtained by
TreeESNs with root state and mean state mappings. For increasing values of σ,

3
5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

M
ea

n
A

bs
ol

ut
e

E
rr

or

sigma

root state mapping
mean state mapping

Fig. 1: Mean absolute 10 fold cross validation test error (and std. deviation) on
the alkanes task by TreeESNs with root state mapping and mean state mapping.
Reservoir dimension equal to 500 units and σ varying between 0.1 and 1.4.

the performance of the model is increased. However, for larger values of σ, such
result is of a limited significance, due to the relative short depth of the trees in
the dataset. More importantly, it is evident that the performance of TreeESNs
resulted to be sensitive to the choice of the state mapping. Results obtained
with standard root state mapping were rather worse than those obtained with
mean state mapping. The best result achieved by TreeESNs with mean state
mapping, in correspondence to σ = 1.0, is 2.595 oC. What is really noteworthy is
the fact that such result, obtained by a model with fixed encoding, is comparable
to those achieved by RecNNs with learning, though inferior to other learning
models for SDs [7] (see Table 1). In particular, the largest test errors were found
in correspondence of the smallest alkanes, which are in a high non-linear relation
with the their boiling point.

Note that the task of predicting the boiling point of alkanes violates the

336

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Model RCC CRCC NN4G TreeESN (mean) TreeESN (root)
Error 2.87 2.56 1.74 2.60 11.71

Table 1: Best mean absolute test errors on the alkanes task for Recursive Cas-
cade Correlation (RCC), Contextual RCC (CRCC), Neural Networks for Graph
(NN4G) and TreeESN models with mean and root state mapping.

Markovian assumption, being related to the number of nodes and to the branch-
ing of the molecular structure [4]. Therefore RecNNs with contractive state
transition functions, such are TreeESNs with root state mapping, being charac-
terized by Markovian (suffix biased) dynamics are unsuitable for it. However,
due to the peculiarity of the task, the target is consistent with the mean op-
erator, which equally treats every node in a tree independently of its position
and allows the readout to distinguish among trees with identical suffixes but
different dimensions. In the following, using a critical approach, we show how
the same mean state mapping could be less helpful for other classes of tasks,
even restricting to sequence domains.

The mean squared test errors obtained by TreeESNs with mean state map-
ping on the Markovian/anti-Markovian tasks are reported in Fig. 2.

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 2 3 4 5

M
ea

n
S

qu
ar

ed
 E

rr
or

lambda

σ = 1.4
σ = 1.2
σ = 0.9
σ = 0.5
σ = 0.1

(a)

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 2 3 4 5

M
ea

n
S

qu
ar

ed
 E

rr
or

lambda

σ = 1.4
σ = 1.2
σ = 0.9
σ = 0.5
σ = 0.1

(b)

Fig. 2: Mean squared test errors on the Markovian (a) and on the anti-Markovian
(b) sequences tasks for increasing values of λ by TreeESNs with mean state
mapping, 100 reservoir units and σ varying between 0.1 and 1.4.

In this case the mean operator has the effect of merging state information
from every time step in the input sequence, such that the relevance of prefixes
and suffixes is the same. Thus the Markovian/anti-Markovian characterizations
of the tasks cannot be caught by the model and poor results are obtained. Such
results are almost the same for the Markovian and the anti-Markovian sequences,
with increasing errors for increasing Markovian/anti-Markovian characterization
of the target (i.e. for increasing λ) and for decreasing contractivity of the state
transition function (i.e. for increasing σ). Note that the best results were found
for λ = 1, in which case the target is no more characterized by either Markovian

337

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

or anti-Markovian properties. ESNs have been applied to the same benchmarks
in [8], reporting a test error of 6.1983×10−10 for the Markovian sequences and of
0.17249 for the anti-Markovian ones (λ = 2, σ = 0.9 and 100 reservoir units for
both the cases). Such results correspond to TreeESNs with root state mapping
as well. The mean operator was not helpful by itself for solving the task with
anti-Markovian sequences (achieving just a slightly better result than ESNs).
Even more remarkable is the fact that it led to a worsening of the performance
(with respect to ESNs) in the case of Markovian sequences.

4 Conclusions

We have presented a preliminary experimental analysis of a generalization of the
ESN approach to trees (TreeESN) using different state mappings. A root state
mapping, preserving the Markovian nature of TreeESN dynamics, was found
to be inappropriate for a task on a chemical domain violating the Markovian
assumption. On such a task, a mean state mapping resulted in better perfor-
mances, even comparable with those of other RecNNs with adaptive encodings.
However, the effectiveness of the mean operator turned out to be related to the
peculiarity of the task at hand rather than to provide a solution to the Marko-
vian bias. In fact, TreeESNs with mean state mapping were unable to solve
a predictive task with a strict Markovian flavor, neither in the form violating
or respecting the Markovian assumption (for which ESNs with root state map-
ping are naturally suitable). Although adaptive encodings provide more flexible
solutions to SD learning, fixed-encoding models like TreeESNs still offer very
efficient solutions that can result (less or more) appropriate according to the
Markovian characterization of the task and to the effect of the state mapping
used to extract the encoded state information. This investigation can help in
supporting the critical exploitation of the model in relational learning tasks.

References

[1] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304(5667):78–80, 2004.

[2] H. Jaeger. The ”echo state” approach to analysing and training recurrent neural networks.
Tech.Rep. 148, GMD - German National Research Institute for Computer Science, 2001.

[3] A. Sperduti and A. Starita. Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

[4] A.M. Bianucci, A. Micheli, A. Sperduti, and A. Starita. Application of cascade correlation
networks for structures to chemistry. Applied Intelligence, 12:117–146, 2000.

[5] P. Tiño, M. Cernanský, and L. Benusková. Markovian architectural bias of recurrent neural
networks. IEEE Transactions on Neural Networks, 15(1):6–15, 2004.

[6] B. Hammer, P. Tiño, and A. Micheli. A mathematical characterization of the architectural
bias of recursive models. Technical Report 252, Universitat Osnabruck, Germany, 2004.

[7] A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Trans-
actions on Neural Networks, 20(3):498–511, 2009.

[8] C. Gallicchio and A. Micheli. Architectural and markovian factors of echo state net-
works. Submitted to journal. Technical Report TR-09-22 (November 2009) available at
http://compass2.di.unipi.it/TR/Files/TR-09-22.pdf.gz.

338

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

