
Free-energy-based Reinforcement Learning in a

Partially Observable Environment

Makoto Otsuka1,2, Junichiro Yoshimoto1,2 and Kenji Doya1,2

1- Initial Research Project, Okinawa Institute of Science and Technology
12-22 Suzaki, Uruma, Okinawa 904-2234, Japan

2 - Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

Abstract. Free-energy-based reinforcement learning (FERL) can han-
dle Markov decision processes (MDPs) with high-dimensional state spaces
by approximating the state-action value function with the negative equi-
librium free energy of a restricted Boltzmann machine (RBM). In this
study, we extend the FERL framework to handle partially observable
MDPs (POMDPs) by incorporating a recurrent neural network that learns
a memory representation sufficient for predicting future observations and
rewards. We demonstrate that the proposed method successfully solves
POMDPs with high-dimensional observations without any prior knowl-
edge of the environmental hidden states and dynamics. After learning, task
structures are implicitly represented in the distributed activation patterns
of hidden nodes of the RBM.

1 Introduction

Partially observable Markov decision processes (POMDPs) are versatile enough
to model sequential decision making in the real world. However, state-of-the-
art algorithms for POMDPs [1, 2] assume prior knowledge of environments: in
particular, a set of hidden states that makes the environment Markovian and
the transition and observation probabilities for the states. They also have a
difficulty in handling high-dimensional sensory inputs.

The use of an undirected counterpart of Bayesian networks has yielded a
new algorithm to handle Markov decision processes (MDPs) with a large state
space [3]. In this free-energy-based reinforcement learning (FERL), a restricted
Boltzmann machine (RBM) is used to approximate the state-action value func-
tion as the negative free energy of the RBM.

In this study, we extend this FERL framework to handle POMDPs using
Whitehead’s recurrent-model architecture [4]. The proposed method can handle
high-dimensional observations and solve POMDPs without any prior knowledge
of the environmental state set and dynamics.

2 Free-energy-based reinforcement learning framework

We briefly review the FERL framework for MDPs [3]. In this framework, the
agent is realized by a RBM (Fig. 1(a)). The visible layer V is composed of
binary state nodes S and action nodes A. The hidden layer is composed of

541

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

binary hidden nodes H . A state node Si is connected to a hidden node Hk by
the connection weight wik, and an action node Aj is connected to a hidden node
Hk by the connection weight ujk. A hidden node hk takes a binary value with the
probability Pr(hk = 1) = σ(

∑
i wiksi+

∑
j ujkaj) where σ(z) � 1/(1+exp(−z)).

The free energy of the system, which is the negative log-partition function of
posterior probability over h given a configuration (S = s, A = a) in thermal
equilibrium with the unit temperature, is given by

F (s, a)=−s�Wĥ− a�Uĥ +
K∑

k=1

ĥk log ĥk +
K∑

k=1

(1−ĥk) log(1−ĥk)

where W ≡ [wik] and U ≡ [uik] are matrix notations of the connection weights.
ĥk ≡ σ([W�s + U�a]k) is the conditional expectation of hk given the config-
uration (s, a), where [·]k denotes the k-th component of the vector enclosed
within the brackets. The network is trained so that the negative free en-
ergy approximates the state-action value function, i.e., −F (s, a) � Q(s, a) �
E[r+γQ(s′, a′)|s, a] where r, s′, and a′ are the reward, next state, and next ac-
tion, and γ is the discount factor for future rewards. By applying the SARSA(0)
algorithm with a function approximator [5], we obtain a simple update rule for
the network parameters:

Δwik = α (rt+1 − γF (st+1, at+1) + F (st, at)) si,tĥk,t (1a)

Δujk = α (rt+1 − γF (st+1, at+1) + F (st, at)) aj,tĥk,t (1b)

where the subscript t denotes the time and α denotes the learning rate. To
select an action at a given state s, we used the softmax action selection rule
with inverse temperature β

π(s, a) = Pr(a|s) ∝ exp{−βF (s, a)} (2)

by calculating the free energies for each action.

3 Model architecture

We incorporate Whitehead’s recurrent-model architecture [4] into FERL frame-
work for solving POMDPs, as shown in Fig. 1(b). The architecture consists
of two modules: an Elman-type recurrent neural network (RNN) for one-step
prediction (predictor) and a RBM for state-action value estimation (actor).

The predictor module predicts the upcoming observation yt and reward rt
1

on the basis of the memory mt, which is supposed to summarize the history of
all past events. At each time t, the memory is given by the sigmoid function
σ(·) of a linear transformation of the previous observation, action, and memory
(yt−1, at−1, mt−1). Once the memory mt is given, the network predicts (yt,

1The notation r denotes a scalar reward, and the vector notation r denotes a bit coding of
the scalar reward with respect to all possible rewards.

542

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Fig. 1: Models for handling high-dimensional inputs. (a) An actor-only archi-
tecture for MDPs. (b) A predictor-actor architecture for POMDPs.

Fig. 2: Digit matching T-maze task. The optimal action at the T-junction is
indicated by arrows.

rt) as the sigmoid function of a linear mapping of mt. All linear coefficients
(weights and biases) of the network are trained by the backpropagation through
time (BPTT) algorithm [6]. The actor module regards the combination of the
current observation and predictor’s memory (yt, mt) as the state vector s. The
actor is trained by the SARSA(0) algorithm with Eq. (1).

4 Experiments

We designed a matching T-maze task in order to show the proposed model’s abil-
ity to solve POMDPs without any prior knowledge of the environmental state set
and dynamics. The matching T-maze task is an extension of the non-Markovian
grid-based T-maze task [7] to investigate the coding and combinatorial usage of
task-relevant information.

An agent can execute four possible actions: go one step North, West, East,
or South. At each time step, an agent observes a binary vector depending on the
position in the maze. In the first experiment, the observation is composed of five
bits encoding the position: (1) the start position, (2) the middle of the corridor,
(3) the T-junction, (4) the left goal, and (5) the right goal and two bits of signals
specifying the rewarding goal position, observed at the start position and the

543

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Pr
ed

ic
tio

n
Er

ro
r (

Tr
ai

ni
ng

)

Ep
oc

h

1 3

80
160
240
320
400

1 3

80
160
240
320
400

1 3 5

80
160
240
320
400

1 3 5

80
160
240
320
400

1 3 5 7

80
160
240
320
400

1 3 5 7

80
160
240
320
400

1 3 5 7 9

80
160
240
320
400

1 3 5 7 9

80
160
240
320
400

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r (

Te
st

)

Ep
oc

h

Step
1 3

80
160
240
320
400

Step
1 3

80
160
240
320
400

Step
1 3 5

80
160
240
320
400

Step
1 3 5

80
160
240
320
400

Step
1 3 5 7

80
160
240
320
400

Step
1 3 5 7

80
160
240
320
400

Step
1 3 5 7 9

80
160
240
320
400

Step

1 3 5 7 9

80
160
240
320
400 0

0.2

0.4

0.6

0.8

1

Fig. 3: Average weighted prediction errors of observations and rewards. The top
and bottom rows show the error for the training and test dataset, respectively.
The vertical and horizontal axes of each panel indicate the training epoch of
RNNs and steps t in a episode, respectively.

T-junction only. In the second experiment, observations are 784-dimensional
binary hand-written digits (Fig. 2).

An episode ends either when the agent steps into the goal states or after
the number of action selections exceeds 10 steps. If the two signals at the start
position and the T-junction are the same, the agent receives a reward of +5
at the right goal and −5 at the left goal; if the two signals are not the same,
the reward condition is reversed. When the agent hits a wall, the underlying
environmental state does not change, and the agent receives a reward of −1.
Otherwise, the agent receives a reward of −0.1. Upon each episode, the two
signals are independently and randomly selected and fixed. We used 7 or 784
observation nodes Y , 4 reward nodes R, and 20 memory nodes M for the
predictor module; we used 20 hidden nodes H and 4 action nodes A for the
actor module.

4.1 Matching T-maze task with orthogonal bit codes

The predictor was first trained by 60 episodic training data with varying step
lengths from 3 to 7, collected by the random action selection, repeatedly 400
epochs (Fig. 3). Using the pre-trained predictor, the proposed predictor-actor
model successfully learned the optimal policy in this task (Figs. 4(a), (b)).

Figs. 5(a), (b) show the activations of the actor’s state nodes (M , Y) and its
hidden nodes H at the T-junction, respectively. The memory layer retained the
signal at the start position (Fig. 5(a)). Principal component analysis (PCA) of
the activation patterns in the actor’s network revealed that the four signal con-
ditions were well separated even before the actor’s learning started (Fig. 6(a)).
This clear separation in high-dimensional space was helpful for state representa-
tion in the actor module in that it allowed the agent to learn the optimal policy.
In addition, the activations of the hidden nodes showed a gradual separation
of firing patterns through the actor’s learning process as though the activations
were functionally differentiated. (Figs. 5(b) and 6(b)).

544

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

0 2000 4000 6000 8000 10000
−5

0

5

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

(a) Discounted return.

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

6

Av
er

ag
e

te
rm

in
al

 re
w

ar
ds

Episode

(b) Terminal reward.

Fig. 4: Performance of the predictor-actor model in the matching T-maze task
with low-dimensional bit-coded observations. The error bars show a standard
deviation over 10 runs. The theoretically optimal performance is indicated by
the dotted lines.

Visits

m
 (8
−

27
),

y(
1−

7)

(10, 01)

1000 2000

5

10

15

20

25

Visits

(10, 10)

1000 2000

5

10

15

20

25

Visits

(01, 10)

10002000

5

10

15

20

25

Visits

(01, 01)

1000 2000

5

10

15

20

25

(a) Actor’s state nodes.

Visits

h
(2

0)

(10, 01)

1000 2000

5

10

15

20

Visits

(10, 10)

1000 2000

5

10

15

20

Visits

(01, 10)

10002000

5

10

15

20

Visits

(01, 01)

1000 2000

5

10

15

20

(b) Actor’s hidden nodes.

Fig. 5: Activation patterns of the actor’s nodes at T-junction. The bit patterns
“10” and “01” enclosed within the parentheses show four conditions of the signals
at two positions (start, T-junction). (a) Actor’s state nodes composed of M and
Y . (b) Conditional activation of actor’s hidden nodes H .

−1
−0.5

0
0.5

−1

0

1
0

5000

10000

PC 1PC 2

T
ju

nc
tio

n
vi

si
t

(10, 01)

(10, 10)

(01, 10)

(01, 01)

(a) Actor’s state nodes.

−0.5
0

0.5
1

−0.5
0

0.5

0

5000

10000

PC 1PC 2

T
ju

nc
tio

n
vi

si
t

(10, 01)

(10, 10)

(01, 10)

(01, 01)

(b) Actor’s hidden nodes

Fig. 6: PCA analysis of actor’s activation patterns in all T-junction visits. The
size of the marker reflects the number of steps to the goals. The smallest marker
indicates 3 steps, and the largest marker indicates 10 steps.

545

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

0 2000 4000 6000 8000 10000
−5

0

5

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

(a) Discounted return.

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

Av
er

ag
e

te
rm

in
al

 re
w

ar
ds

Episode

(b) Terminal reward.

Fig. 7: Performance of the predictor-actor model in the matching T-maze task
with high-dimensional pixel observations.

4.2 Matching T-maze task with high-dimensional observations

In the second task, pixel images of hand-written digits were used as observa-
tions. The performance of the agent remained suboptimal as shown in Fig. 7(a);
however, the agent still showed the tendency to select the correct goal as shown
in Fig. 7(b). It indicates that the information about the initial signal was at
least retained in the predictor’s hidden nodes.

5 Conclusion and future work

In this study, we extended the FERL framework to handle POMDPs. Here, nei-
ther the state transition probability nor the true set of the underlying Markovian
state was given a priori. We used this approach to handle high-dimensional ob-
servations and obtained preliminary results.

In order to improve the performance of this architecture, the separation of a
predictor for observations and rewards can be helpful. With this modification,
several nuisance parameters are removed, and a scalar reward can be handled.

References

[1] J. Hoey and P. Poupart. Solving POMDPs with continuous or large discrete observation
spaces. In IJCAI, volume 19, page 1332, 2005.

[2] M. Toussaint, L. Charlin, and P. Poupart. Hierarchical POMDP controller optimization
by likelihood maximization. UAI, 2008.

[3] B. Sallans and G. E. Hinton. Reinforcement learning with factored states and actions.
Journal of Machine Learning Research, 5:1063–1088, 2004.

[4] S. D. Whitehead and L. J. Lin. Reinforcement learning of non-Markov decision processes.
Artificial Intelligence, 73:271–306, 1995.

[5] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, 1998.

[6] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

[7] B. Bakker. Reinforcement learning with long short-term memory. NIPS, 2:1475–1482,
2002.

546

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

