
Towards sub-quadratic learning of probability
density models in the form of mixtures of trees

François Schnitzler1 and Philippe Leray2 and Louis Wehenkel1 ∗

1- Université de Liège - Department of EECS & GIGA-Research
Grande Traverse, 10 - B-4000 Liège - Belgium

2- Knowledge and Decision Team,
Laboratoire d’Informatique de Nantes Atlantique (LINA) UMR 6241,

Ecole Polytechnique de l’Université de Nantes, France

Abstract. We consider randomization schemes of the Chow-Liu algo-
rithm from weak (bagging, of quadratic complexity) to strong ones (full
random sampling, of linear complexity), for learning probability density
models in the form of mixtures of Markov trees. Our empirical study on
high-dimensional synthetic problems shows that, while bagging is the most
accurate scheme on average, some of the stronger randomizations remain
very competitive in terms of accuracy, specially for small sample sizes.

1 Background and motivations

A bayesian network (BN) over a finite set X = {Xi}ni=1 of n discrete random
variables is a graphical probabilistic model consisting of two parts [1]. The first is
a directed acyclic graph over the variables (each variable corresponds to a vertex
in this graph). The second is a set of conditional probability distributions (for
each variable Xi, conditionally to its parents in the graph). A BN encodes a
joint distribution over X by the product of these conditional distributions, and
it may be exploited to perform probabilistic inferences over that distribution.
However, exact inference as well as structure learning with BNs are NP-hard
unless the skeleton of the graph is constrained [2].

Markov Trees are an interesting subclass of BNs, whose skeletons are acyclic
and for which each node of the graph has (at most) one parent [1]. With Markov
trees, the computational complexity of inference is linear in the number of vari-
ables, and structure learning by using the so-called Chow-Liu algorithm is es-
sentially quadratic in the number of variables [3]. However, the restrictions on
the structure also limit the modeling abilities of Markov trees, and, in practice,
they are often not suited to represent a distribution.

A mixture model of size m consists of a set of different probability models,
each of them defined over X . To each term of the model is associated a positive
weight, wi, with the constraint

∑m
i=1 wi = 1. A Mixture of Trees (MT) [4] is

a particular type of mixture where each term Ti of the model is a Markov tree
defined on X . The probability P (x) of an event x, encoded by the MT model,

∗This work was supported by a F.R.I.A. scholarship, by Wallonie-Bruxelles International,
the FNRS, the French ministry of foreign and European affair, and the MESR in the framework
of Hubert Curien partnerships. It was also funded by the Biomagnet IUAP network of the
Belgian Science Policy Office and the Pascal2 network of excellence of the EC. The scientific
responsibility rests with the authors.

219

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

is equal to the weighted sum of the probabilities of this event according to each
individual term of the mixture (Ti(x)): PMT (x) =

∑m
i=1 wiTi(x).

MT models can represent a much wider class of probability densities than
single trees while retaining their interesting computational properties [4], making
these models attractive for scaling graphical models to high-dimensional prob-
lems. Most algorithms for learning MT models use in their inner loops the Chow-
Liu algorithm [4, 5]. However, since the Chow-Liu algorithm is quadratic in the
number of variables, these methods do not scale well to very high-dimensional
problems, with thousands or even millions of variables, while more and more
such datasets are encountered in practice. In this work we therefore investi-
gate MT models learned by using various randomized versions of the Chow-Liu
algorithm, with the aim of reducing the computational complexity, and simul-
taneously improving accuracy in small (i.e. realistic) sample size conditions.

The rest of this paper is organized as follows. In section 2, we describe the
algorithms that we will compare, and in particular the randomized versions of
the Chow-Liu algorithm. In section 3 we report our empirical investigations with
these algorithms, and in section 4 we summarize and discuss further work.

2 Tree structure generation algorithms

In this section we describe algorithms using a training dataset composed of N
joint observations of n random variables to derive Markov trees. We first recall
the non-randomized Chow-Liu algorithm, and then describe three randomized
versions of it by increasing sophistication. Notice that once a tree structure has
been obtained, the associated conditional distributions are estimated from the
training set (maximum a posteriori, non-informative prior); this step requires
an O(nN) number of operations (see [5]). Notice also that in our mixtures,
we always use uniform weights; indeed the experiments in [5] show that this
is beneficial with respect to a bayesian weighting scheme, specially when the
mixture terms are i.i.d. from a subset of models already well fitting the data.

2.1 Chow-Liu algorithm

This algorithm learns a Markov tree structure maximizing the likelihood of the
training set [3]; it comprises three steps:

1. computation of the (symetric) matrix of empirical Mutual Informations
(I) between all pairs of variables; this needs O(n2N) computations;

2. use of the I matrix as edge-weights to build a Maximum Weight Spanning
Tree (MWST); this needs about O(n2) operations (see for example [6]);

3. orientation, in O(n) operations, of the edges of the MWST by choosing an
arbitrary root-node and propagating edge-directions away from it.

2.2 Random tree structure generation algorithm

This algorithm generates a tree structure totally at random, which may be done
in O(n) operations (see [5] for a precise description of the algorithm).

220

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

2.3 Random edge selection algorithm

A way to improve the complexity of the Chow-Liu algorithm is to reduce the
number of (non zero) terms computed in its first step. The random edge selection
algorithm does this by randomly selecting a subset of a priori fixed size of pairs of
variables (edges) that will be inspected in the MWST algorithm. The complexity
of this algorithm is linear in the number of edges that are drawn at random.
Notice that its tree structures may be disconnected, and that their dependence
on the dataset is increasing with the number of edges that are drawn.

2.4 Randomized vertex clustering algorithm

In this section, we explore a less näıve idea so as to sample the potentially
interesting (i.e. of large weight) edges. Our idea is based on the analogy of
the MWST problem with questions such as the nearest neighbor query or the
shortest path problem defined over metric spaces, were a subset of n points
defines n ∗ (n− 1)/2 distances (or edges) between them. In metric spaces, such
queries can sometimes be solved by sub-quadratic algorithms [7] exploiting the
triangular inequality satisfied by distance measures: when point A is close to
point B, which is far away from C, A is also likely to be far from C.

In our context, we use I to measure the “closeness” between variables, al-
though it is not a distance measure in the mathematical sense. Still, if two pairs
of variables {A,B} and {A,C} are close in terms of I, then B and C may as well
be expected to be close in this sense. More formally, one may derive the bound:
I(B;C) � I(A;B) + I(A;C)−H(A), where H(A) denotes the entropy of A.

Our random vertex clustering algorithm aims at avoiding the computation
of the complete I matrix. To this end, it builds a clustering of the variables
according to their I , and then uses subsequently only the pairs of variables that
are found close to each other in this structure for the MWST algorithm. As
illustrated in Fig. 1, it proceeds iteratively, until all variables are attached to a
cluster. In this process, the first cluster center is chosen at random among all
variables, while the subsequent ones are selected in a deterministic way as the
variable among those that were not yet allocated to a cluster in the preceding
iterations and that has the least I with the already existing cluster centers.

The construction of a cluster makes use of two thresholds on I: one cluster-
threshold (IC) and one neighborhood-threshold (IN). The algorithm computes

(a) First a center (here
X5) is chosen at ran-
dom and compared to
all 12 other variables.

(b) Next, the 1st clus-
ter is built. Here it has
5 members and one
neighbor.

(c) The 2nd center
(X13, the farthest
from X5) is compared
only to 7 variables.

(d) Final result, after
4 iterations. All edges
considered are kept for
the MWST inference.

Fig. 1: Illustration of the vertex clustering algorithm.

221

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

the mutual information I of the central cluster variable to each candidate variable
(i.e. each yet unclustered variable) and identifies it as:

1. a member of the cluster, if I > IC ,

2. a neighbor of the cluster, if IC ≥ I > IN ,

3. not related to the cluster, otherwise.

Setting those thresholds can be seen as excluding potentially independent vari-
ables. The exclusion rate of independent variables can be controlled, since the
empirical I for two such variables follows a χ2 law.

In the second step of the algorithm, the Is of all potentially interesting pairs
(Xi, Xj) are evaluated and used as edge-weights for the MWST algorithm: we
consider as interesting those pairs that are in a same cluster or that span two
neighboring clusters, two clusters being called neighbors if at least one variable
of one cluster is a neighbor of the other cluster. In addition, all edges that have
been evaluated during the clustering process are used as candidate edges.

The complexity of this algorithm is between linear and quadratic in the
number of variables, depending on the numerical values of IC and IN .

3 Experimental results

The algorithms described in the previous section were applied to synthetic prob-
lems, following the methodology from [5]. The results presented here for each N
were averaged on 10 datasets times 10 target distributions over 1000 variables,
and we report them for mixtures of various sizes.

Method from Sec. 2.4 was applied by using for IC (respectively IN) the
percentile 0.5 (respectively 5) of the χ2 distribution. To assess its interest versus
the random draw of edges of Sec. 2.3, this latter method was constrained to
sample the same percentage (35%) of all possible edges than the former. As
baselines, we used: (1) a single MWST built using the Chow-Liu algorithm; (2)
mixtures of totally random tree structures; (3) mixtures obtained by applying
the Chow-Liu algorithm to bootstrap copies of the dataset [5]. Indicative CPU
times for training the 10×10 mixtures of size m = 100 are given in Table 1.

We assessed the accuracy of the studied algorithms by using a Monte-Carlo
approximation of the Kullback-Leibler (KL) divergence [8] between the target
distribution Pt and the learned one Pl, computed by

D̂KL(Pt||Pl) =
∑

x∼Pt

log
Pt(x)

Pl(x)
.

We used two sets of 60,000 samples to check convergence of these estimations.

Rand. trees Rand. edge selection Rand. vertex clustering Bagging
2,063 s 64,569 s 59,687 s 168,703 s

Table 1: Training CPU times, cumulated on 100 data sets of 1000 samples
(MacOS X; Intel dual 2 GHz; 4GB DDR3; GCC 4.0.1)

222

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

3.1 Results

Figures 2 display the D̂KL values of models built with all algorithms for growing
mixture sizes m (2(a)), sample sizes N (2(b)) and degree of randomization. From
Figure 2(a) we observe that the more sophisticated methods tend to converge
slower. From Figure 2(b), we observe that bagging yields the best performances
except for N < 50, and that edge sampling (respectively, vertex clustering)
outperforms the single Chow-Liu tree for N < 200 (respectively, N < 400).

From both figures it appears clearly that the more clever detection of the
problem structure by the vertex clustering method (green �) yields in all cases
a worthy improvement over the naive random edge sampling strategy (light blue
♦). While the improvement is small, it is significant and it comes with virtually
no additional computational cost.

(a) Effect of mixture size m (N = 300). (b) Effect of sample size N (m = 100).

Fig. 2: Performances (averages over 10 target distributions and 10 datasets), for
random edge sampling (♦, light blue), random vertex clustering (�, green), tree
structure bagging (dark blue), random tree structures (�, maroon), and a single
Chow-Liu tree (dashed, red).

(a) Effect of the %age of randomly selected
edges: 60, 35, 20, 5 (�, ♦, �, �) (m=100).

(b) Variabilities of accuracies by target
distribution (m=100, N=300).

Fig. 3: KL divergences estimated by Monte-Carlo (average values over 10 target
distributions with 1000 variables and 10 datasets).

We believe that the behavior of the random vertex clustering algorithm to be
strongly dependent on the problem structure, and we therefore leave the study
of the impact of its parameters choice for future work. We expect however that
its performance is more or less proportional to the number of edges computed.
As a proxy, Fig. 3(a) displays the effect of a modification of the number of edges
used by the random edge sampling algorithm. Without surprise, the more edges

223

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

considered the closer the curve to that of the Chow-Liu method. At low samples
sizes, the fewer edges the better, while the opposite holds for larger samples.

To check the soundness of our conclusions, Figure 3(b) indicates the vari-
ability of our accuracy assessments: for the 10 target distributions (arranged
horizontally) and each method we show a box plot of 20 D̂KL values obtained
with 10 learning samples of size 300 and two test samples of size 60000. We
observe that the tendencies observed previously hold with almost no exception.

4 Conclusion

In this paper, we studied empirically randomization schemes to exploit the Chow-
Liu algorithm for building mixtures of trees. Our study shows that the accuracy
loss is in line with the gain in complexity: the two novel sampling methods
are better than the less complex random structure sampling but worse than
the more complex bagging. We also observe that stronger randomization is
productive when the number of samples N is much smaller than the number n
of variables, which is the rule in very high-dimensional problems.

A more interesting observation can be made from the comparison of our two
novel sampling algorithms: vertex clustering yields indeed a significant improve-
ment over the random edge sampling approach, without any complexity loss.
While the former algorithm is not yet a convincing alternative to the state-
of-the-art, further improvements can be proposed. First, its parameter space
should be explored, in order find a way to tune these parameters in an adaptive
way. Also, the selection of the best among the randomly generated models could
be an interesting avenue for further improving this method.

Alternatives to the vertex clustering algorithm can also be proposed, e.g. like
a greedy method improving a given tree by comparing neighboring variables.

References

[1] P. Judea. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 1988.

[2] G.F. Cooper. The computational complexity of probabilistic inference using bayesian belief
networks. Artificial Intelligence, 42(2-3):393–405, March 1990.

[3] C.I. Chow and C.N. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Trans. Inf. Theory, 14:462–467, 1968.

[4] M. Meila and M.I. Jordan. Learning with mixtures of trees. J. Mach. Learn. Res., 1:1–48,
2001.

[5] S. Ammar, P. Leray, B. Defourny, and L. Wehenkel. Probability density estimation by
perturbing and combining tree structured markov networks. In Proceedings of ECSQARU,
pages 156–167, 2009.

[6] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity.
J. ACM, 47(6):1028–1047, 2000.

[7] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613, New York, NY, USA, 1998.

[8] S. Kullback and R.A. Leibler. On information and sufficiency. ANN MATH STAT,
22(1):79–86, 1951.

224

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

