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Abstract. In this paper we introduce an approach to integrate hetero-
geneous structured data into a learning vector quantization. The total
distance between two heterogeneous structured samples is defined as a
weighted sum of the distances in the single structural components. The
weights are adapted in every iteration of learning using gradient descend on
the cost function inspired by Generalized Learning Vector Quantization.
The new method was tested on a real world data set for pollen recognition
using image analysis.

1 Introduction

In the area of image recognition usually only image features are used for classi-
fying the contents of the image. Regarding the application of image recognition
in the medical and biological domain classical image feature based approaches
sometimes fail because of the high variability of the manifestations of a phe-
nomenon. Given success model for such classification tasks, is the human ex-
pert. An important element of the human successes is to integrate information
or features into the classification process that do not directly correspond to gray
values in the image. The goal is to find a generalized possibility to incorporate
such information into machine learning and technical classification procedures.

1.1 Example - Pollen recognition

One example, where the incorporation of additional features supporting the im-
age based analysis improves the classification performance, is pollen recognition.
Building on a newly developed pollen sampling hardware system we gain digital
images of pollen probes. After filtering and segmenting these images there are
single objects to be classified as either non-pollen objects or pollen of a specific
species.

When classifying pollen objects based on image (for example microscopic
views) the human expert always incorporates information about the context.
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He is e.g. primed to those object classes that were already present in the probe
currently under investigation. So he relies his classification of uncertain objects
on those objects identified with high reliability and frequency.

To introduce a similar mechanism into our classification process we first train
a ”normal” classification on image features (i.a. Haralick and Zernicke Features)
for a training set. By classifying this training set a threshold for reliable classi-
fication (based on the reliability value the classification delivers) is determined.
All objects in the training set not exceeding this threshold in classification go
into a second classification training step incorporating the distribution of the
reliably classified objects on their corresponding probe.

1.2 Incorporating of heterogeneously structured data

How can this classification incorporating heterogeneously structured data look
like? One obvious observation is that image features and single relative frequen-
cies are not directly comparable to each other. We need at least a different
weighting of the dimensions depending on their structural membership. Fur-
thermore it would be preferable to use different distance metrics for the different
structural components. Each one should be best suited for the data structure
under investigation. The total distance is then defined as a weighted sum of the
distances in every structural component.

But how to choose the weights for the single structural components? If
these weights of the components are integrated into a cost function of a learning
algorithm, the weights can easily be adapted with respect to minimizing the cost
function in a gradient descend approach. In the following sections it is shown how
these heterogeneous structures can be incorporated into Generalized Learning
Vector Quantization (GLVQ). Furthermore the pollen recognition problem is
used as an example.

2 Methods

First we will shortly sketch the fundamentals of Generalized Learning Vector
Quantization and then describe the specific characteristics of the heterogeneous
structured data incorporation.

2.1 Generalized Learning Vector Quantization

As opposed to most Learning Vector Quantizers that are motivated heuristically,
Generalized Learning Vector Quantization [1] was developed to optimize a cost
function that approximates the classification error. The resulting update rules
are stochastic gradients on this cost function.
Cost function:

E =
n∑
k=1

Ek =
n∑
k=1

(
d+ (vk, w+)− d− (vk, w−)

(d+ + d−)

)
with n - number of examples, w+ - Best matching unit correct class, w− - Best
matching unit incorrect class, d distance function.
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Weight updates:

∆w+ ∝ −
δEk
δw+

= εw ·
d−

(d+ + d−)
2 · (v − w+)

and:

∆w− ∝ −
δEk
δw−

= −εw ·
d+

(d+ + d−)
2 · (v − w−)

2.2 Heterogeneous Learning Vector Quantization

Under the assumption that the total distance of two samples in the heterogeneous
structured feature space can be represented as the sum of weighted distances in
every single structural component (with internal homogeneous weight), we get
a new cost function:

E =
n∑
k=1

Ek =
n∑
k=1

D∑
j=1

αj · Ejk =
n∑
k=1

D∑
j=1

αj ·

(
d+j (vk, w+)− d−j (vk, w−)(

d+j + d−j
) )

with n - number of examples, D - number of structural components, αj - weight-

ing parameter of structural component j with 0 ≤ αj ≤ 1 and
∑D
j=0 αj = 1,

w+ - Best matching unit correct class, w− - Best matching unit incorrect class,
vk = ([vk]1, . . . , [vk]D) - kth sample with the [vk]j being different structural com-
ponents of vk, dj = d ([vk]j , [w+]j) different (not necessary comparable) distance
measures (metrics).

The weight updates are obtained as derivatives of the cost function:

∆[w+]j ∝ −
δEk
δ[w+]j

= − δEjk
δ[w+]j

= −αj · εw ·
d−j(

d+j + d−j
)2 · δd+j

δ[w+]j

and:

∆[w−]j ∝ −
δEk
δ[w−]j

= − δEjk
δ[w−]j

= αj · εw ·
d+j(

d+j + d−j
)2 · δd−j

δ[w−]j

For different metrics the derivatives
δd+j
δ[w+]j

and
δd−j
δ[w−]j

differ accordingly e.g.:

• Euclidean metric:
δd−j
δ[w−]j

= −2 · ([vk]j − [w−]j)

• Divergences (z.B. Cauchy-Schwarz-Divergence, see [2] for more detail):

DCS (v, w) =
1

2
· log

(∫
v2 (x) dx ·

∫
w2 (x) dx

)
− log

(∫
v (x) · w (x) dx

)
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with integral becoming sums (because of discrete data) :

DCS (v, w) =
1

2
· log

(∑
v2i ·

∑
w2
i

)
− log

(∑
vi · wi

)
and thus

δDCS ([v]j , [w+]j)

δ[w+]j
=

[v]j∑
j v

2
i

− [w+]j∑
j vi · w+i

The adaptation scheme of the weighting parameters alpha again follows from
the respective derivative of the cost function as before:

∆αj ∝ −
δE

δαj
= −δEk

δαk
= −εα · Ejk = −εα ·

(
d+j (vk, w+)− d−j (vk, w−)(

d+j + d−j
) )

2.3 Heterogeneous-LVQ for pollen recognition

2.3.1 Basic data set

In the pollen recognition problem, we have a data set of pollen objects. We
calculated a set of 63 image features (e.g. Haralick contrast, shape of object,
Zernicke features, see [3] for details) for every segmented pollen object. This
basic data set includes 4856 samples from 12 pollen classes and 191 probes. The
objects were labeled with their pollen classes by an experienced pollen counting
expert using the digital microscopy images.

2.3.2 Preparation of data set for HLVQ

The basic data set was classified using a hierarchical linear discrimination ap-
proach as published in [3] and in the classification process a reliability for every
classified object was calculated. We than divided the data set into (1) pollen
recognized with a reliability of at least 80% and (2) pollen recognized with less
then 80% reliability.

From group (1) we calculated for every probe present in this group the rela-
tive frequency for all pollen species. The feature values of the objects in group
(2) were extended by the relative frequencies for all pollen species of the corre-
sponding probe as an additional structural component. Thus we have a feature
vector v = (v1, v2) with v1 being a vector of image features (dimension of 63) and
v2 being a vector of relative frequencies (dimension of 12) of the corresponding
probe, the feature vector came from.

The data set for the HLVQ was build from those pollen objects in group (2)
with the extended features. Additionally we removed pollen from probes with
less than five pollen recognized reliably or less than two classes already reliably
recognized. The resulting data set was class-wise divided into training and test
set, resulting in 459 pollen objects for training (set TR) and 452 for testing (set
TE).
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2.3.3 The whole procedure of pollen recognition

The whole training procedure is as follows:

1. First training phase: Training of a basic classification ([3]) based only on
the image feature values of all 4856 pollen samples; test this classification
on all pollen samples; calculating a reliability for every object.

2. Second training phase. Preparation of HLVQ data set, training of HLVQ
using the HLVQ training set TR.

3. Test phase: Classify the HLVQ test pollen samples TE with the HLVQ.

In a working system the input is a set of all pollen objects from one probe.
First the image features are calculated for all those pollen objects. They are
classified using the basic classification from the first training phase. Again the
set is split into (1) objects with reliability of at least 80% and (2) objects with
reliability of less then 80%. From group (1) the relative frequencies are calculated
for this probe, that are added to the feature values of the objects in group (2)
as second structural component. The extended feature vectors in group (2) are
than classified using the HLVQ from the second training phase.

3 Experiments

3.1 Experimental setting

We made three different experiments and compared the error rate of the resulting
classification with the error rate of the first classification step on the data. For
the first experiment, we split up image features and relative frequency features
and used the normal euclidean distance for both structural components and
adapted the weights of this structural components. Using the CS divergence for
the relative frequency features and the euclidean distance for the image features
in the given HLVQ was the second experimental setting.

3.2 Results

The basic classification (using a multi-step method introduced in [3]) achieved
with a single unadapted metric a correct classification rate of 110 by 452 samples
on the testing set, thus about 24%.

The settings described above were all tested with 10 different HLVQs each
using two different annealing strategies for εα, each one with five different ini-
tializations. The HLVQs contained 100 prototypes (nearly 10 per class) that
were adapted over 120000 learning steps (thus 10000 per class). Both HLVQs
achieved much higher recognition rates than the basic classification. Table 1
shows the mean and standard deviation of the number of correctly classified
pollen that were obtained in both experimental settings.

For both test modalities we first assessed the mean value of the distances in
the single structural components. We used these values for normalizing the dif-
ferences before weighting them with the αis. Thus we can identify the relevance
of single structural components from the values of the αis.
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Experimental setting absolute relative standard
mean mean deviation
of correctly classified pollen

HLVQ euclidean–euclidean 386, 5 85, 5% 0, 8%
HLVQ euclidean–CS-Divergence 317, 5 70, 2% 1, 2%

Table 1: Number of correctly classified pollen for testing set in pollen recognition
using different experimental settings.

In the first experimental setting (euclidean–euclidean) the weighting of the
image feature component v1 was in the mean about α1 = 0.42 and thus the
weighting of the relative frequency component v2 at α2 = 0.58. That means,
that the image feature component was weighted less than the relative frequency
component.

For the second experimental setting (euclidean–CS-Divergence) the weight-
ing of the image feature component v1 always converged to α1 = 1, i.e. α2 = 0.
That means, that the relative frequency features are not considered at all for
the classification. We assume that this is the reason for a worse recognition rate
in this test modality. In our opinion the HLVQ has a tendency to avoid high
variability in the distances. Therefore it may decrease the weighting of the rel-
ative frequencies measured by CS-Divergence, which has such a high variability
in the dot products.

4 Conclusion and perspectives

In this paper we introduced a general concept to incorporate structured, hetero-
geneous data into a learning process for classification. Introducing this concept
into the cost function of GLVQ we developed a method performing very good on
the problem of pollen object recognition. Using adequate metrics the method
finds a better influence weighting for the different structural components and
thus performs better for classification. We were surprised at the highly positive
influence the relative frequencies had on the correct classification rate.

The incorporation of relative frequencies can also support image features in
other domains (e.g. pathology imaging). It is also possible to use this general
concept in other learning methods. When incorporating categorical data it is
necessary to use a median version of the learning method under investigation.
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[3] D. Zühlke and M. Häusler and U. Heimann. PollenMonitor - a system for automatic
determination of pollen concentration in ambient air. The 4th European Symposium on
Aerobiology 12-16 August 2008 University of Turku, Finland.

276

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.




