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Abstract. Curvilinear Component Analysis (CCA) is an interesting flavour
of multidimensional scaling. In this paper one version of CCA is proved to
be related to the mapping found by a specific Bregman divergence and its
stress function is redefined based on this insight, and its parameter (the
neighbourhood radius) is explained.

1 Introduction

Multidimensional scaling (MDS) [2] is an exploratory data investigation method
in which each data sample is represented by a latent point in a lower dimensional
space such that the layout of the latent points best represents the relative layout
of the original data points i.e. the distances between latent points best mirrors
the distances between the original data points. Usually the latent space is two
dimensional so that they can be investigated by eye by researchers. In this paper
we will investigate a variety of MDS known as Curvilinear Component Analysis
(CCA). The notation used in this paper is as follows. X stands for original data
set, Y stands for the configuration of X in the latent space. D stands for the
distance matrix in data space and L stands for the distance matrix in latent
space. Xi stands for data point i in data space and Yi stands for projected point
in latent space. Dij stands for the interpoint distance between Xi and Xj ; Lij

stands for the interpoint distance between Yi and Yj . i, j = 1, 2, · · · , N .
In section 2 CCA is briefly reviewed and a discrepancy between stress func-

tion definition and corresponding algorithm is noted; in section 3 a new stress
function that is consistent with the algorithm is proposed; finally in section 4 the
advantages of the new stress function and the ’neighbourhood radius’ parameter
are explained.

2 Curvilinear Component Analysis

Curvilinear Component Analysis(CCA) [3] is good at unfolding strongly nonlin-
ear or even closed structures, which means it allows stretching of long distances.
There are three versions of CCA, the first two versions were proposed in [3]
where both stress function and optimisation algorithm are described, the third
one is an enhanced version proposed in [4] for noisy data set. Due to limited
space, in this paper only one early version in [3] is discussed. The stress function
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to be minimised is defined as

ECCA(Y ) =
1

2

N∑
i=1

N∑
j=1

(Lij −Dij)
2w(Lij , λ) (1)

The weight function w(Lij , λ) has as argument the interpoint distance in latent
space rather than data space as with most MDS algorithms. There are two
versions

• global weighting with w(Lij , λ) = e−
Lij
λ

• local weighting which uses a step function with w(Lij , λ) = 1 if Lij <
λ, and 0 otherwise.

λ is called the ’neighbourhood radius’, which decreases with time during the
simulation.

The optimisation method is a kind of stochastic gradient descent. Firstly the
whole stress is broken into parts, (1) is rewritten as ECCA(Y ) =

∑N
i=1 E

i
CCA(Y ).

The value of i is randomly selected and the data pointXi is fixed. Then updating
rule for Yj is

Yj ← Yj − α
∂Ei

CCA(Y )

∂Yj
=

∂Ei
CCA(Y )

∂Lij

∂Lij

∂Yj
(2)

where

∂Ei
CCA(Y )

∂Lij
= (Lij −Dij)w(Lij , λ) +

(Lij −Dij)
2

2

∂w(Lij , λ)

∂Lij
(3)

,
∂Lij

∂Yj
=

Yj−Yi

Lij
, α is a decreasing factor.

Although the expression (3) is not complicated, the authors still consider a

’quantized version’ [3] of the weight function, in which
∂w(Lij ,λ)

∂Lij
= 0, the second

term of (3) is discarded to get

∂Ei
CCA(Y )

∂Lij
= (Lij −Dij)w(Lij , λ) (4)

and the updating rule (2) is derived as Yj ← Yj−α
(Lij−Dij)

Lij
w(Lij , λ)(Yj−Yi).

From the above we can see that each time one data point is randomly chosen and
is fixed, all the other points are relocated with respect to this fixed point. When
one point is relocated, only the value of the fixed point i and the current point
j affect relocation of j, and since i is constant at this stage, the stress function
is actually a p dimensional function in point j where p is the dimensionality of
the latent space. If p = 2, during the optimisation process the stress function is
treated as two dimensional.

However for the global version,
∂w(Lij,λ)

∂Lij
= − 1

λe
−Lij

λ , the solution to the

simplified version is that Lij = +∞, which is obviously not a solution we desire.
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When the simplification is made, the weight function is in fact changed and thus
the stress function is accordingly different but neither the new weight function
nor the new stress function is given in [3].

The local weighting version receives more attention in the literature, such as
in [6] its stress function is redefined as well as the updating rule. In this paper
we only focus on the global weighting and we take the weight function w(Lij , λ)
as the global function in the rest of the paper. Accordingly the stress function
(1) is called Basic CCA

EBasic(Y ) =
1

2

N∑
i=1

N∑
j=1

(Lij −Dij)
2e−

Lij
λ (5)

We now show that the new stress is a sum of Bregman Divergences.

3 Right Bregman divergences and CCA

Consider a strictly convex function F : S → � defined on a convex set S ⊂ �d.
A Bregman divergence [1] between two points, p and q ∈ S, is defined to be

dF (p,q) = F (p)− F (q)− 〈(p− q),∇F (q)〉 (6)

where the angled brackets indicate an inner product and ∇F (q) is the derivative
of F evaluated at q. This can be viewed as the difference between F (p) and its
truncated Taylor series expansion around q. Thus it can be used to ‘measure’
the convexity of F .

When F is in one variable, the divergence (6) is expressed as dF (p, q) =
F (p)− F (q)− dF

dq (p− q). We have in [7], used the residuals of the Taylor series

dF (p, q) = d2F
dq2

(p−q)2

2! + d3F
dq3

(p−q)3

3! + d4F
dq4

(p−q)4

4! + · · · to investigate Sammon

mappings [5]with left Bregman divergences.
Bregman divergences have the following useful properties: dF (p,q) ≥ 0 and

dF (p,q) = 0←→ p = q and dF (p,q) �= dF (q,p) except in special cases such as
F (.) =‖ . ‖2, the Euclidean norm.

In [7], we show how e.g. the Sammon mapping and other metric multidi-
mensional scaling can be generalised with left Bregman divergences. We now
link CCA with right Bregman divergences to get the real stress function. Let us
select a base convex function, F (x) = e−

x
λ . Then

EReal(Y )

= λ2
N∑
i=1

N∑
j=1

dF (Dij , Lij) = λ2
N∑
i=1

N∑
j=1

(F (Dij)− F (Lij)− (Dij − Lij)∇F (Lij))

= λ2
N∑
i=1

N∑
j=1

(
e−

Dij
λ − e−

Lij
λ + (Dij − Lij)

e−
Lij
λ

λ

)
=

N∑
i=1

N∑
j=1

TReal(Lij) (7)

Defining Ei
Real(Y ) =

∑N
j=1 TReal(Lij), then
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∂Ei
Real(Y )

∂Lij
= (Lij −Dij)e

−Lij
λ = (Lij −Dij)w(Lij , λ) (8)

We can now equate (4) with (8). The stress function (7) in fact should be
EReal + C,C a constant that does not affect mapping result so we set C = 0.
Thus (7) is the real stress function that creates (4). λ2 is only for qualitative
comparison purposes and has no effect on the mapping result.

4 Comparison between the Real CCA and the Basic CCA

The Basic CCA (5) is rewritten as EBasic(Y ) =
∑N

i=1

∑N
j=1 TBasic(Y ). TBasic

is the stress for distance Dij . The solutions for
dTBasic(Y )

dLij
= (Lij − Dij)e

−Lij
λ

(
1− Lij−Dij

2λ

)
= 0 are Lij = Dij and Lij =

Dij + 2λ. λ determines the width and height of stress curve as depicted in
Figure 1(a). When λ is reduced from 2 to 1.5 the right part of the graph
becomes shorter and narrower as can be seen in the graph.

It is clear from the graph that the stress function is monotonically decreasing
with respect to the latent space distances Lij ∈ [0, Dij]; it is increasing for
Lij ∈ [Dij , Dij + 2λ]; after the peak Lij = Dij + 2λ the stress decreases with
distance. The parameter λ has slight influence on the graph Lij ∈ [0, Dij ] but
determines the width and height of graph for Lij > Dij . Obviously when data
are configured infinitely far apart, Lij = +∞, the stress function is minimised
to the lowest value, zero. But this does not give us a solution with which to
best visualise the data. The acceptable solution must be a configuration that is
a local minimum instead of the global minimum.

The shape of the stress function causes potential problems during optimi-
sation using any gradient descent method. For example even if the output ini-
tialisation guarantees that Lij < Dij + 2λ, the mapped distances can possibly
climb over the peak and become larger and larger which is a good reason for
[3] to make the simplification (4). To prevent this from happening, we propose

a change to the global weight version of the Basic CCA w(Lij , λ) = e−
Lij
λ if

Lij < Dij +2λ, 0 if Lij ≥ Dij +2λ. We have shown empirically that this change
has made the Basic CCA better.

The Real CCA We may alternatively express (7) as the tail of the Taylor

series, given ∂F (n)(x)
∂xn =

(−1
λ

)n
e−

x
λ which gives

TReal(Y ) = e−
Lij
λ

(Dij−Lij)
2

2! − e−
Lij
λ

λ
(Dij−Lij)

3

3! + e−
Lij
λ

λ2

(Dij−Lij)
4

4! + · · ·
= TBasic − e−

Lij
λ

λ
(Dij−Lij)

3

3! + e−
Lij
λ

λ2

(Dij−Lij)
4

4! + · · · . So we can see that (7) is
an extension of (5), and (5) is an approximation of (7). Figure 1(b) compares
the Basic CCA and the Real CCA by TBasic and TReal. For Lij < Dij , TReal is
slightly lower than TBasic; while for Lij > Dij TReal is much greater than TBasic.
It is also worth noting that the graph for Real CCA is not symmetric; the left
part where Lij < Dij (projection) is steeper than the right part where Lij > Dij
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(unfolding) as illustrated in Figure 1(c). The same distance error |Eij |, Eij =
Lij − Dij , in the right part Treal|Lij>Dij , contributes less stress than in the
left Treal|Lij<Dij . This is the reason the distances tend to be mapped longer.
Like the Sammon mapping, small distances are focused on. From TReal(Lij) =

λ2e−
Dij
λ (1− e−

Eij
λ − Eije

−Eij
λ

λ ), for the same distance error Eij ,we can see that
the smaller the Dij is, the higher the stress is, as illustrated in Figure 1(d). The

neighbourhood radius λ indicates a inflection point. The root for
d2TReal(Lij)

dL2
ij

=

e−
Lij
λ (

Dij+λ−Lij

λ ) = 0 is Lij = Dij + λ. For Lij ≥ Dij + λ the stress starts
to grow at reducing speed until it levels off. Thus distances which are mapped
longer than their original values are not seriously penalised in stress. As with
the Basic CCA, λ also has serious consequences on the right part of the stress
graph as illustrated in Figure 1(e). When λ decreases from 2 to 1, for Lij < Dij

the stress decreases a little; but for Lij > Dij the stress reduces sharply, and
the width of the graph is also reduced. When λ = 2, Dij < λ, the stress for the
leftmost is lower than the rightmost; it is the opposite situation for λ = 1 where
Dij > λ; when Dij = λ = 1.5, they are equal. Figure 1(f) shows that stress for
the right part reduces much faster than the left part with the decrease of λ.

5 Conclusion

This paper has investigated CCA in the context of Bregman divergences. We
have shown how Bregman divergences enable us to investigate some discrepancies
in the CCA method. Clearly the type of analysis performed in this paper can be
also performed on other MDS methods such as the Sammon mapping but this
is the subject of another paper. Clearly also there are many other optimization
techniques that can be used but again space has constrained us to the stochastic
optimisation algorithm.
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(a) Stress graph for the Basic
CCA
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to the same distance error when
projection and unfolding.
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Fig. 1: Basic CCA vs Real CCA
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