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Abstract. We introduce a novel method to build multiple local regres-
sion models based on the prototype vectors of the SOM network and other
well-known vector quantization (VQ) algorithms. The resulting models
are evaluated in the task of identifying the inverse dynamics of a heat ex-
changer data set. Additionally, we evaluate through statistical hypothesis
testing the influence of the VQ algorithm on the performance of the local
model. Simulation results demonstrate that the proposed method consis-
tently outperforms previous MLP- and SOM-based approaches for system
identification.

1 Introduction

Identification of nonlinear dynamic systems with neural networks was consis-
tently evaluated by [1] who, under mild conditions, have shown that such NARX
neural networks are able to solve difficult function approximation problems.
Since then, neural-based system identification procedures have been dominated
by standard supervised architectures, such as the Multilayer Perceptron (MLP)
and the Radial Basis Functions (RBF) networks.

More recently, the self-organizing map (SOM) has emerged as a viable alter-
native to more traditional neural-based approaches to identification and control
of nonlinear dynamical systems [2, 3, 4, 5, 6]. In this paper, multiple local models
based on the SOM are developed and used to approximate the inverse dynamics
of a heat exchanger data set. Local models have been a source of much interest
because they have the ability to adhere to the local shape of an arbitrary surface,
which is difficult especially in cases when the dynamical system characteristics
vary considerably throughout the state space.

Several complex dynamical systems which can be described by the NARX
model [7]: y(t) = f [y(t − 1), . . . , y(t − p); u(t), u(t − 1), . . . , u(t − q + 1)], where
p and q are the memory orders of the dynamical model. This equation states
that the system output y at time t depends on the past p output values and
on the past q values of the input u. In many situations, it is also desirable
to approximate the inverse mapping of a nonlinear plant: u(t) = f−1[ u(t −
1), . . . , u(t − q); y(t − 1), . . . , y(t − p)], whose goal is to estimate the input of a
given system based on previous values of the input and output variables.

The remainder of the paper is organized as follows. In Section 2 a novel
method for the design of multiple local inverse NARX models based on the SOM
is proposed. Computer simulations and discussions are presented in Section 3.
The paper is concluded in Section 4.
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2 Local Models Based on Neighboring Prototype Vectors

The algorithm to be described is called Multiple Models K-winners SOM (M-
KSOM), since it is based on the KSOM architecture. The KSOM itself is a local
regression approach to solve system identification problems [8] that depends
on the VQTAM model [6], which is an extension of the SOM algorithm for
simultaneously performing vector quantization on the input and output spaces
of a given nonlinear mapping.

In the VQTAM model, the input vector x(t) is composed of two parts. The
first part, denoted xin(t) ∈ R

p+q, carries data about the input of the dynamic
mapping to be learned. The second part, denoted xout(t) ∈ R, contains data
concerning the desired output of this mapping. The weight vector of neuron i,
wi(t), i = 1, ..., N , has its dimension increased accordingly. These changes are
represented as

x(t) =

(

xin(t)
xout(t)

)

and wi(t) =

(

win
i (t)

wout
i (t)

)

, (1)

where win
i (t) ∈ R

p+q and wout
i (t) ∈ R are, respectively, the portions of the weight

(prototype) vector which store information about the inputs and the outputs of
the desired mapping.

Depending on the variables chosen to build the vector xin(t) and scalar
xout(t) one can use the SOM algorithm (or any other VQ algorithm) to learn
the forward or the inverse mapping of a given dynamic system. For the inverse
modeling task we are interested in, we define xin(t) = [u(t−1), . . . , u(t−q); y(t−
1), . . . , y(t − p)]T and xout(t) = u(t).

The winning neuron i∗ at time step t is determined based only on xin(t):

i∗(t) = arg min
∀i

{‖xin(t) − win
i (t)‖}. (2)

For updating the weights, however, both xin(t) and xout(t) are used:

∆win
i (t) = α(t)h(i∗, i; t)[xin(t) − win

i (t)] (3)

∆wout
i (t) = α(t)h(i∗, i; t)[xout(t) − wout

i (t)] (4)

where 0 < α(t) < 1 is the learning rate, and h(i∗, i; t) is a time-varying Gaussian
neighborhood function. Both, α(t) and h(i∗, i; t), should decay in time as in the
usual SOM training.

The M-KSOM model building starts once VQTAM training is finished. For
each neuron i in the VQTAM, we determine the K closest prototype vectors to
the prototype vector win

i :

j
(i)
1 = arg min

∀j 6=i
{‖win

i − win
j ‖};

...
...

...

j
(i)
K = arg min

∀j 6={i,j1,...,jK−1}
{‖win

i − win
j ‖}, (5)
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where Ji = i ∪ {j
(i)
k }K

k=1 is the set containing the indexes of the K prototype
vectors which are closest to win

i , including neuron i.
Once the set Ji is determined for each neuron i, we build N local regression

models using the prototype vectors whose indexes belong to Ji. Thus, associated
to neuron i, we have a coefficient vector ai ∈ R

p+q computed using the least
squares method:

ai =
[

RT
i Ri + λI

]−1
RT

i bout
i , i = 1, ..., N (6)

where I is a identity matrix of order K and λ > 0 (e.g. λ = 0.001) is a small
regularization constant. The vector bout

i ∈ R
K+1 is comprised of the output

parts of the K prototype vectors whose indexes belong to Ji:

bout
i = [wout

i wout
j1(i) · · · wout

jK
(i) ]

T , (7)

while the matrix Ri is built as follows

Ri =













win
i,1 win

i,2 · · · win
i,p+q

win

j
(i)
1 ,1

win

j
(i)
1 ,2

· · · win

j
(i)
1 ,p+q

...
...

...
...

win

j
(i)
K

,1
win

j
(i)
K

,2
· · · win

j
(i)
K

,p+q













(K+1)×(p+q)

=





















(

win
i

)T

(

win

j
(i)
1

)T

...
(

win

j
(i)
K

)T





















(8)

where the superscript T denotes the transpose vector/matrix.
Once the N local regression models are built, they can be used to approximate

the output of the nonlinear mapping of interest. Note that we use one local model
per input vector x(t). Which one to use at time t is defined by the index of the
winning neuron, as shown in Eq. (2).

In this paper we use the M-KSOM method to approximate the inverse map-
ping of a nonlinear plant. Thus, the M-KSOM model estimate the current input
u(t) by means of the following equation:

û(t) = aT
i∗(t)xin(t), (9)

where the estimation error (residual) at time t is defined as e(t) = u(t) − û(t).

3 Computer Simulation and Discussion

All the models are evaluated via the statistics of the resulting normalized mean-
squared error: NMSE =

∑M

t=1 e2(t)/M · σ̂2
u, where σ̂2

u is the variance of the
original time series {u(t)}M

t=1 and M is the length of the sequence of residuals.
Finally, hypotheses testing are carried out to analyze the influence of the VQ al-
gorithm on the performance of the resulting local inverse model. The hypothesis
testing is implemented through the Kolmogorov-Smirnov test on the estimation
error distribution generated by a given model.
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Fig. 1: Measured values of (a) liquid flow rate and (b) outlet liquid temperature.

Table 1: Performance results for the heat exchanger data.
Neural NMSE

Models mean min max variance

MLP-1h 0.4292 0.4173 0.4501 4.0224e-005
M-KSOM 0.5640 0.4137 0.8118 0.0109
MLP-LM 0.5672 0.2140 0.6016 0.0048
KSOM 0.5841 0.4139 1.3877 0.0205
Linear 0.9257 0.9257 0.9257 5.2849e-014

MLP-2h 1.3003 1.2207 1.5466 0.0059

The heat exchanger data set comes from a liquid-satured steam heat ex-
changer [9], where water is heated by pressurized saturated steam through a
copper tube. The motivation for the choice of the heat exchanger as a bench-
mark is that this plant is characterized by a non-minimum phase system. Fig-
ure 1 shows the measured values of the input time series ((a) {u(t)}, m3/s) and
the output time series ((b) {y(t)}, oC) and the sampling time is 1s.

Results on the NMSE criterion: All the models are trained using the
first 3200 samples of the input/output time series (approx. 80% of the total)
and tested with the remaining 800 samples. The best configuration found for
the MLP-1h and MLP-LM models have 20 hidden neurons. For the MLP-2h,
the number of hidden neurons in the second layer is heuristically set to half the
number of neurons in the first hidden layer, respectively 10 and 20 neurons at
each hidden layer. The MLP-based models were trained with constant learning
rate equal to 0.1. All these nonlinear models are also compared with the linear
inverse model, trained on-line through the plain LMS algorithm. The memory
orders were set to p = 6 and q = 3, respectively.

For the KSOM and M-KSOM models, the number of neurons was set to
N = 30. The initial and final learning rates are set to α0 = 0.5 and αT = 0.001,
respectively. The neighborhood initial and final radii are σ0 = N/2 and σT =
0.001, respectively. We found K = 20 by experimentation as the optimal value.
The NMSE values were averaged over 100 training/testing runs, randomizing
the initial weight values at each run. The obtained results are shown in Table 1.
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Table 2: Performances of the M-KSOM model for different VQ algorithms.
M-KSOM Method

VQ NMSE

Algorithms mean min max variance

SOM 0.5640 0.4137 0.8118 0.0109
WTA 0.6519 0.5620 0.7355 0.0016

K-means 0.8273 0.6594 0.8512 0.0008
FCL 1.2770 1.1522 1.4250 0.0037
FSCL 1.4013 1.1679 2.0755 0.0589

Table 3: KS-test on the M-KSOM performance for different VQ algorithms.
VQ KS-test

Algorithm Results

FCL Reject Null Hypothesis
FSCL Reject Null Hypothesis
WTA Accept Null Hypothesis

K-means Accept Null Hypothesis

The best performances were achieved by global models (MLP-1h and MLP-
LM). However, the performance of the M-KSOM model is comparable to those
resulting from MLP-1h and MLP-LM models.

The influence of the VQ algorithm on the performance of the M-KSOM
approaches in the inverse system identification task are evaluated in Table 2.
The M-KSOM method implemented using the following VQ algorithms: stan-
dard competitive learning (winner-take-all, WTA), K-means, frequency sensitive
competitive learning (FSCL) and fuzzy competitive learning (FCL). By analyz-
ing this table we can observe that the best local model was the one generated
by the SOM algorithm, an indication that topology preservation is important
for the proposed local regression approach.

Hypothesis Testing: The final experiment evaluates the degree of similar-
ity among the sequence of residuals (e(t) = u(t) − û(t)) generated by the M-
KSOM method for different VQ algorithms. We use the Kolmogorov-Smirnov
test (KS-test) [10] to measure the distance between the empirical cumulative
distribution functions (CDF) of two sequences of residuals. The null hypothesis
is that the sequences are drawn from the same distribution. If two M-KSOM
models implemented using two different VQ algorithms generate statistically
equivalent sequences of residuals (according to the KS-test), then the resulting
local models are equivalent.

Tables 3 presents the results for the M-KSOM model. In this table, a rejection
of the null hypothesis indicates that the CDF of the residuals generated by the
original M-KSOM model1 is different from the CDF of residuals generated by
the M-KSOM implemented with a different VQ algorithm. The acceptance of
the null hypothesis indicates that the CDF of the residuals generated by the
original KSOM model is equivalent to the CDF of residuals generated by the
KSOM implemented with a different VQ algorithm.

From Table 3 one can infer that the performance of the original M-KSOM

1The original M-KSOM model, as proposed in this paper, uses the SOM algorithm.
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model is statistically equivalent to those obtained by implementing the M-KSOM
with the WTA and K-means algorithms. This result is in accordance with the
NMSE results shown in Table 2, since these M-KSOM models built using these
alternative VQ algorithms generate the smallest values of NSME, in average.
The original M-KSOM model produces the best NMSE results, however, if com-
putational cost is an importante issue, the user can build the M-KSOM model
using the WTA algorithm instead, with a slight degradation in performance.

4 Conclusion

In this paper we introduced a novel method to design local regression models
using the prototype vectors of the Self-Organizing Map. The proposed approach,
however, is general enough to be used with different vector quantization algo-
rithms. We evaluate the performance of the proposed local regression approach
for different VQ algorithms on the task of inverse system identification. All
the resulting models were also analyzed statistically through the Kolmogorov-
Smirnov test in order to study the influence of the VQ algorithms on the per-
formances of the local models. The main general conclusion of the presented
experiments is that the performances of VQ-based local inverse models are com-
parable to or better than those of global MLP-based models.
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