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Abstract. Least Squares Support Vector Machines (LS-SVMs) were
proposed by replacing the inequality constraints inherent to L1-SVMs with
equality constraints. So far this idea has only been suggested for a least
squares (L2) loss. We describe how this can also be done for the sum-
of-slacks (L1) loss, yielding a new classifier (Least 1-Norm SVMs) which
gives similar models in terms of complexity and accuracy and that may
also be more robust than LS-SVMs with respect to outliers.

1 Introduction

Assuming a binary classification context, we have a sample of N preclassified
patterns {Xi, yi} , i = 1, . . . , N , where the outputs yi ∈ {+1,−1}. If we further
assume linear inseparability and consider slack variables to allow for misclassifi-
cations, the primal of an LS-SVM [1] is

min
W,b,ξ

1
2
‖W‖2 +

C

2

∑
i

ξ2
i s.t. yi (W · Φ(Xi) + b) = 1 − ξi ∀i, (1)

where · denotes inner product, and Φ (Xi) is the image of Xi in the feature space
with feature map Φ (·). The corresponding dual is

min
α

1
2

∑
i

∑
j

αiαjyiyjK̃ij −
∑

i

αi s.t.
∑

i

αiyi = 0, (2)

with the modified kernel K̃ij = k (Xi,Xj) + δij/C, δij standing for Kronecker’s
delta symbol and k (Xi,Xj) = Φ (Xi) · Φ(Xj) the original kernel.

LS-SVMs were originally derived in [1] from the so-called L1-SVMs [2], whose
primal changes (1) in three aspects: 1) the objective function uses the L1 loss
C

∑
i ξi instead of the L2 loss, 2) the equality constraints become inequality

ones, and 3) there is the additional requirement that ξi ≥ 0. In turn, L2-SVMs,
also described in [2], lie somewhere in between, since their primal is identical to
(1), but with the equality constraints still transformed into inequality ones.

To our knowledge, there is no current classifier that combines equality con-
straints with the L1 loss. It is desirable to fill this gap mainly because of two
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Squared Slacks Slacks
Inequality constraints L2-SVMs L1-SVMs
Equality constraints LS-SVMs ?

Table 1: Types of SVMs according to how slacks and constraints are treated.

facts: 1) in practice L1-SVMs and the L1 loss have become the standard, 2) the
influence of a given pattern (i.e. the value of its coefficient αi) in the model is
not bounded when using the L2 loss, so L2 and LS-SVMs are more sensitive to
outliers than L1-SVMs.

The central idea of this work is to simplify L1-SVMs similarly to LS-SVMs,
but keeping the L1 loss, giving rise to the so-called Least 1-Norm SVMs, which
fill the gap above and are expected to preserve the robustness to outliers. The
rest of the paper is organized as follows: in Section 2 we give the primal and
dual of Least 1-Norm SVMs and discuss briefly their KKT optimality conditions.
Section 3 explains how the popular SMO algorithm can be adapted to solve the
Least 1-Norm dual. Section 4 reports some experiments that illustrate how they
can be more robust to outliers than LS-SVMs while being as accurate as them,
and discusses the varied convergence speeds observed. Finally, Section 5 gives
pointers to future possible extensions.

2 Least 1-Norm SVMs

In order to simplify the L1-SVM primal, one may think that it suffices to force
equality constraints yi (W · Φ(Xi) + b) = 1 − ξi, while keeping the inherent
requirement ξi ≥ 0. However, this is not correct because it implies that slacks
are only allowed in one direction, something which is obviously not convenient.
Therefore, we propose to remove the constraints ξi ≥ 0 and minimize the 1-Norm
of the slack vector, which gives the Least 1-Norm SVM primal

min
W,b,ξ

1
2
‖W‖2 + C

∑
i

|ξi| s.t. yi (W · Φ(Xi) + b) = 1 − ξi ∀i. (3)

Now we use the cast of 1-Norm problems as Linear Programming problems
[3, p. 294]: minimizing (3) can be reformulated as

min
W,b,t

1
2
‖W‖2 + C

∑
i

ti s.t. − ti ≤ 1 − yi (W · Φ(Xi) + b) ≤ ti ∀i, (4)

Note that (4) transforms the desired equalities of (3) into inequalities, but
otherwise the objective function is not differentiable. Using standard Lagrangian
theory with (4) and denoting βi (γi) as the multipliers associated with −ti (+ti)
we obtain the following dual, where αi = γi − βi:

min
α

1
2

∑
i

∑
j

αiαjyiyjKij −
∑

i

αi s.t.
∑

i

αiyi = 0, −C ≤ αi ≤ C ∀i, (5)
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which happens to be identical to the L1-SVM dual but with the lower bound
−C instead of 0, so that negative values are allowed, as in LS-SVMs.

Since all the formulations above are convex with affine constraints, the KKT
optimality conditions are necessary and sufficient for optimality [3]. The KKT
conditions for (4) are analogous to the well-known ones for L1-SVMs, substitut-
ing just the lower bound −C for 0, which yields:

yi (W · Φ(Xi) + b) = 1 ∀i | − C < αi < C,

yi (W · Φ(Xi) + b) ≤ 1 ∀i | αi = C,

yi (W · Φ(Xi) + b) ≥ 1 ∀i | αi = −C, (6)

together with the dual constraints W =
∑

i αiyiΦ(Xi) and
∑

i αiyi = 0. These
are common to LS-SVMs, whose only primal KKT condition [1] is

yi (W · Φ(Xi) + b) = 1 − αi/C ∀i, (7)

which shows why LS-SVMs are very sensible to outliers: outliers are character-
ized by a large |ξi|, which in view of (7) and (1) implies a large |αi|. On the
other hand, in Least 1-Norm SVMs this influence is limited because |αi| ≤ C.

It also shows another drawback of LS-SVMs: they are not sparse because
αi = Cξi ∀i, so a pattern takes part in the model whenever ξi �= 0, which is
almost certain to happen. Observe that this is also the case for Least 1-Norm
SVMs, since αi = 0 implies yi (W · Φ(Xi) + b) is exactly 1, so they are not likely
to be sparse either. L1-SVMs are indeed sparse because, instead of −C, patterns
with yi (W · Φ(Xi) + b) > 1 are assigned αi = 0.

3 Least 1-Norm SMO

We will adapt SMO for Least 1-Norm SVMs basing on a maximum gain view-
point (for more details see [4]). In general, SMO performs updates of the
form W ′ = W + δLyLXL + δUyUXU . The constraint

∑
αiyi = 0 implies

δUyU = −δLyL and the updates become W ′ = W + δyL (XL − XU ), where
we write δ = δL and, hence, δU = −yUyLδ. As a consequence, the multiplier
updates are α′

L = αL + δ, α′
U = αU −yUyLδ and α′

j = αj for other j. Therefore,
denoting the dual function in (5) as D (α), D (α′) can be written as

D (α′) = D (α) − (ΔU,L)2

‖ZL,U‖2
,

where we write ΔU,L = W · (XU − XL) − (yU − yL) and ZL,U = XL − XU .
Ignoring the denominator, we can approximately maximize the gain in D (α′) by
choosing L = arg minj {W · Xj − yj} and U = arg maxj {W · Xj − yj}, so that
the violation extent ΔU,L is largest. Writing Δ = ΔU,L and λ′ = Δ/‖ZU,L‖2, we
then have Δ > 0, λ′ > 0, δ = yLλ′ and the α updates become α′

L = αL + yLλ′,
α′

U = αU − yUλ′. Thus, α′
L or α′

U will decrease if yL = −1 or yU = 1, which
requires the corresponding αL and αU to be greater than −C. In turn, they will
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increase if yL = 1 or yU = −1, which requires the corresponding αL and αU to
be less than C. Hence, we must replace the previous L,U choices with

L = arg min
j

{W · Xj − yj : j ∈ IL} , U = arg max
j

{W · Xj − yj : j ∈ IU} , (8)

where we use the notations IU = {i : (yi = 1, αi > −C) ∨ (yi = −1, αi < C)}
and IL = {i : (yi = 1, αi < C) ∨ (yi = −1, αi > −C)}. Moreover, to make sure
that α′

L and α′
U remain then in the interval [−C,C], we may have to clip λ′ with

λ′ = min {λ′, C − yLαL, C + yUαU} . (9)

4 Numerical Experiments

In this section we will illustrate empirically how the Least 1-Norm SVM may
be more robust to outliers than its LS-SVM counterpart, as well as its good
generalization properties. The training algorithm is SMO; the Least 1-Norm
variant explained above and the LS-SVM version in [5]. The stopping criterion
is final KKT violation, specifically when it is less than ε = 10−3. For LS-SVMs
this means

max
i

{
W̃ · Φ̃ (Xi) − yi

}
− min

i

{
W̃ · Φ̃ (Xi) − yi

}
≤ ε, (10)

where the tilde indicates that we use the modified kernel k̃ as in (2). For Least
1-Norm SVMs, it means

max
IU

{W · Φ(Xi) − yi} − min
IL

{W · Φ(Xi) − yi} ≤ ε. (11)

The derivation of these KKT based criteria is given in [6] for LS-SVMs and
[7] for L1-SVMs. Firstly, to show generalization we take 4 datasets from [8] with
100 training–test splits each. We compare the performance of Least 1-Norm
and LS-SVMs. We use the RBF kernel k (Xi,Xj) = exp

(−‖Xi − Xj‖2/σ
)
. The

values for the hyperparameters C and σ are sought with a grid in the logarithmic
range [0, 2] for C and [0, 4] for σ. Each point of the grid is evaluated with a 10-
times-10-fold cross-validation over the whole dataset. We report in Table 2 the
accuracy and number of support vectors obtained in the final models, as well as
the number of iterations needed by the corresponding SMO version to stop.

LS Least 1-Norm
% err. #SV #It. % err. #SV #It.

Titanic 22.4±1.0 150.0±0.0 390.1±14.7 22.4±1.0 71.4±9.8 53.7±6.1
Heart 15.6±3.2 169.9±0.3 261.3±7.8 15.6±3.5 169.9±0.3 120.1±14.7
Cancer 25.7±4.5 199.8±0.5 424.6±7.9 25.9±4.5 195.9±2.3 3510.7±701.9
German 23.3±2.1 699.4±0.8 3329.8±38.0 23.3±2.2 699.9±0.3 16167.4±1419.3

Table 2: Average accuracies, number of support vectors and number of iterations
obtained by a Least 1-Norm SVM and an LS-SVM.
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(a) LS−SVM without outliers, C = 1
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(b) Least 1−Norm SVM without outliers, C = 1
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(c) LS−SVM with outliers, C = 1
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(d) Least 1−Norm SVM with outliers, C = 1

−101

Fig. 1: Contours of function W ·Φ(X)+ b for a toy problem trained with an LS-
SVM (left) and a Least 1-Norm SVM (right). Top: original problem. Bottom:
modified problem with one outlier for each class.

It can be seen how the accuracies obtained are similar for both kinds of SVM
and also similar to the ones reported in [8] for an L1-SVM. Regarding the number
of support vectors, as expected, none is sparse, except the Least 1-Norm SVM
for dataset titanic, which we think is due to the existence of identical points
with different tags. Finally, concerning the number of iterations, it is somewhat
puzzling, sometimes the LS-SVM is remarkably faster and sometimes the Least
1-Norm SVM is. This of course depends on the hyperparameters chosen, but it
is not clear what is the exact influence of them. Care must also be taken since
(10) and (11), though formally similar, may require quite different number of
iterations since the W vectors are different. Further study is clearly needed to
better characterize what the convergence speed will be for each case.

Secondly, to show robustness we use the toy bidimensional problem depicted
in 1, where 20 patterns belong to each class. The positive class’ patterns are
drawn from a normal distribution with mean (0, 0), whereas the negative class
has a mean of (5, 2). In both cases the covariance matrix is the unit one. In the
top part of the figure we train an LS-SVM (a) and a Least 1-Norm SVM (b)
with this training set, which is linearly separable, with C = 1 and no specific
kernel (just the inner product). Note that the final hyperplanes are very similar
and the “support”hyperplanes traverse their corresponding cloud of points.

In the bottom part of the figure, we introduce two outliers by switching the
class labels of two points, so that the classes are no longer linearly separable,
training again the LS-SVM (c) and the Least 1-Norm SVM (d). Observe that
the final LS-SVM hyperplane has remarkably changed its orientation because of
the outliers’ influence, whereas the Least 1-Norm one changes quite less because
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their influence is limited.

5 Conclusions and further work

In this work we have presented Least 1-Norm SVMs, a new SVM classifier. As
LS-SVMs did with L1-SVMs, they are derived by substituting inequality for
equality constraints in the primal. The arising dual is almost identical to the
L1 one, with box constraints [−C,C] in lieu of [0, C]. This implies that the
outliers’ influence is also limited, but sparsity is lost because now the points for
which yiW · Φ(Xi) > 1 are assigned an αi = −C instead of being zero. We
have also seen how it can be trained with an adaptation of the well-known SMO
algorithm, giving models with similar test accuracies. Which particular SVM
variant converges faster seems to be problem and parameter dependent.

As a possible future extension, the training phase for Least 1-Norm SVMs
can be accelerated by making use of the 2nd order variant of the SMO algorithm
as was done for L1-SVMs in [7]. This method has been shown to not always
accelerate LS-SVM training [6]. As mentioned above, the convergence properties
of SMO for Least 1-Norm SVMs will be further studied.
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