
The Markov Decision Process
Extraction Network

Siegmund Duell1,2, Alexander Hans1,3, and Steffen Udluft1

1- Siemens AG, Corporate Research and Technologies, Learning Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany

{duell.siegmund.ext|alexander.hans.ext|steffen.udluft}@siemens.com
2- Berlin University of Technology, Machine Learning,

Franklinstr. 28-29, D-10587 Berlin, Germany

3- Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab,
P.O.Box 100565, D-98684 Ilmenau, Germany

Abstract. This paper presents the Markov decision process extraction
network, which is a data-efficient, automatic state estimation approach
for discrete-time reinforcement learning (RL) based on recurrent neural
networks. The architecture is designed to model the minimal relevant dy-
namics of an environment, capable of condensing large sets of continuous
observables to a compact state representation and excluding irrelevant in-
formation. To the best of our knowledge, it is the first approach published
to automatically extract minimal relevant aspects of the dynamics from
observations to model a Markov decision process, suitable for RL, without
requiring special knowledge of the regarded environment. The capabilities
of the neural state estimation approach are evaluated using the cart-pole
problem and standard table-based policy iteration.

1 Introduction

Reinforcement learning (RL) [1] describes a class of methods to solve optimal
control problems. Usually the problem is assumed to be a Markov decision
process (MDP) M := (S,A,P,R) with a state space S, a set of possible ac-
tions A, the system dynamics, defined as state transition probability distribu-
tion P : S × A × S → [0, 1], which gives the probability of reaching state s′ by
executing action a in state s, and a reward function R : S ×A× S → R, which
determines the reward for a given transition. In many real world problem set-
tings the current state st is hidden and an observation zt ∈ Z is the only source
of information about the considered environment. The mapping of states and
actions to observations is described by the observation function O : S ×A → Z.
To apply standard RL algorithms to a partially observable Markov decision pro-
cess (POMDP) M ′ := (S,Z,A,P,R,O), a state estimator is required to provide
a Markovian representation of the environment.

The Markov decision process extraction network (MPEN) is based on the ap-
proach presented in [2], where a hidden layer of a dynamic consistent recurrent
neural network is used as state representation. We extend this work to auto-
matically select the required aspects of the considered dynamics and therefore
only model the minimal required MDP. Previous approaches were only able to

7

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

model the minimal dynamics in terms of redundant information including all
dynamical aspects of the regarded set of observations.

The paper is divided into four parts. Subsequent to the introduction Sec. 2
gives a short overview of state estimation from a history of observations using
neural networks. In Sec. 3 we describe in detail the architecture of the MPEN,
where Sec. 4 underlines our theoretic findings by an application to the well known
cart-pole problem. A conclusion and further prospects are given in Sec. 5.

2 State Estimation from a History of Observations

RL problems can be viewed as an agent interacting with an environment by
performing different actions and observing a state transition as well as a re-
ward signal. As described in the introduction section, the original state of an
environment might not be available to the agent. Therefore the only source of
information about the system’s state is provided by an observation, which often
does not satisfy the Markov property.

A näıve approach to model a Markovian state is to accumulate a sufficient
number of prior time slices into a single state. Although the resulting state space
fulfills the Markov property, in many cases it is not applicable due to its high
dimensionality.

To overcome this problem, a neural bottleneck network (e.g., [3]) can be used
to condense all relevant information into a compact state representation. This
approach allows to reduce all redundant information and decorrelates the state
variables. The bottleneck network approach can further be rewritten as a dy-
namic consistent recurrent neural network [4] to account for the time invariance
of sequential data and therefore avoid overfitting by reducing the number of free
parameters. Recurrent state estimators have shown remarkable results in various
industrial applications and are therefore preferably used for sequential data [5].
For discrete time grids (t = 1, . . . , T, T ∈ N) the dynamics can be described as

st+1 = f(st, zt, at), (1)
zt = g(st). (2)

The dynamic consistent recurrent neural network (RNN) approach was proven
to model a Markovian state space [2]. In either using an RNN or a neural bot-
tleneck architecture, the goal is to optimize

T∑
t=1

(z̃t − zt)2 → min
f,g

, (3)

where z̃t is the neural approximation of the measured zt. As the complete ob-
servation vector zt needs to be predicted, the modeled dynamics can well be
much richer than the minimal dynamics required for RL. Therefore, the appli-
cability of these approaches can be limited in case of industrial problem settings
with high dimensional observation spaces containing various measurements of
possibly irrelevant dynamic subsystems. In such scenarios manual preselection

8

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

of relevant observables may be required, demanding expert knowledge, and may
lead to a loss of relevant information.

The MPEN approach is based on the idea of RNNs but only models relevant
aspects. To accomplish this goal, several changes to the standard dynamic con-
sistent network, described above, have been made. First, the network is split
into past and future subnetworks to match

st+1 =

⎧⎨
⎩

fpast(st, zt, at), t < 0,
fpresent(s0, at), t = 0,
ffuture(st, at), t > 0.

(4)

This allows us to use the reward signal itself as target instead of the näıve target
of predicting all observables:

rt = g(st, at), t ≥ 0. (5)

Note that the current state st and the applied action at are sufficient to
describe the expected value of all relevant reward functions since all informa-
tion about the successor state st+1 must be included in these two arguments.
Through this target the objective of the neural network becomes

T∑
t=1

(r̃t − rt)2 → min
f,g

, (6)

which causes the network to model only the required dynamical aspects in st.
The network accumulates all information required for the Markov property from
the sequence of past observations in the past network, while the future network
optimizes the prediction of the state transitions. The exact specification of the
MPEN architecture is described in the next section.

3 The Markov Decision Process Extraction Network

The MPEN is a recurrent neural network consisting of a past (t < 0) and a
future (t ≥ 0) subnetwork (fig. 1). There are no explicit targets in the past
but required information can be extracted from the complete considered history.
The past network is connected to the future network via an arbitrary neural
structure (e.g., a weight matrix, a multi-layer perceptron). The future network
uses the information provided by past network as well as future actions to learn
the dynamics capable of predicting a sequence of future rewards. Note that the
goal of the network is not a forecast of the sequence of actions which induced the
state transitions, because action selection can be based on information which is
not included in the set of observables or might be even unpredictable (e.g., due
to random exploration).

As proven in [6], an RNN can be used to approximate an MDP by predicting
all expected future successor states based on a history of observations. Because of
the RNN structure each state must encode all necessary information to estimate

9

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

rt

si
t−1 st−1 si

t s0 st si
t+1 st+1

at−2 zt−1 at−1 zt at

Ap
1 Ap

2 Ap
1 Ap

2 D Af
1 Af

2 Af
1

Cp Bp Cp Bp Cf

E G

F

Fig. 1: The MPEN architecture. Clusters of neurons are depicted as circles. The
connection arrows can be either a weight matrix or a multi-layer perceptron.
Connectors with identical label (e.g., Ap

1) are identical due to shared weights.
The dashed neural structures are only required for learning. Cluster st contains
a Markovian state representation for recall. If the dimensionality of matrices Ap

and Af are equal, clusters s0 and st can be merged.

a successor state accounting for the influence of an action. For this reason an
RNN must be able to estimate the expected rewards for each future state, as a
reward function can only use a state, action, and successor state as arguments.
From this follows:

Theorem 3.1 To estimate a state suitable for RL it is sufficient to model the
dynamics predicting the reward for all future time slices.

Based on this theorem the MPEN architecture is introduced to model the
minimal dynamics of a regarded problem. In practice the horizon of forecasts is
usually limited. For RL the discount factor γ introduces a natural limit of the
significant horizon. Built on these observations the MPEN is derived from an
RNN with separated past and future weight sets [6]. As mentioned above, the
reward function arguments or the evaluated reward function is used as target.
The major advantage of the MPEN over other RNN-based state estimators is
the capability to model the minimal dynamics from a set of observables without
manual selection of variables. A further advantage is the capability to extract
the minimal state space in comparison to a network with dynamic consistent
overshooting, where all considered input variables are predicted and therefore
encoded in the state space.

4 Experiments and Results

To demonstrate the capabilities of the MPEN approach, a partially observ-
able version of the cart-pole problem was used to calculate a policy using an
MPEN for state estimation. The classical cart-pole problem [1] consists of a
pole mounted on a cart and a limited track. The overall objective is to balance
the pole as long as possible without hitting a boundary of the track or tilt the
pole for more than 12◦. We define the problem to be solved when balancing
the pole for at least 100.000 steps. The reward signal is defined to be −1 when
hitting any of the boundaries and 0 otherwise. The (Markovian) state of the

10

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

number of observed state transitions

tr
ia

l
le

ng
th

0 1 2 3 4 5 6 7 8 9 10
×104

0

1

2

3

4

5 ×104

Fig. 2: Demonstration of the MPEN approach. Shown is the performance of
policies based on the original state space (full line) and the neural state space
as modeled by the MPEN from the partially observable state. The results were
averaged over 25 trials.

cart-pole problem at any time step t is fully described by the position of the cart
xt, the velocity of the cart ẋt, the angle of the pole perpendicular to the cart
αt, and the angular velocity of the pole α̇t. Possible influences by three discrete
actions are to push the cart to the left or to the right by a constant force F or
to apply no force at all.

In previous work, the cart-pole problem has been studied in various forms.
The focus of this work is to demonstrate the capabilities of the MPEN archi-
tecture, i.e., the capability to model a suitable MDP for RL by predicting a
future sequence of expected rewards. Therefore, we used the cart’s position and
velocity and the pole’s angle as observables since this modification sufficiently
violates the Markov property for table-based policy iteration (PI) to fail.

Policies based on a discretized four-dimensional neural state space gener-
ated by an MPEN (from observations of the three-dimensional partially ob-
servable state space) are compared to policies based on observations of the four-
dimensional original state space. The MPEN with lags from t ∈ {−10,−9, . . . , 25}
was trained from 25.000 partially observable transitions of the cart-pole problem.
The available state variables were normalized (mean = 0, standard deviation
= 1). No other transformation on the data was performed. To apply standard
table-based PI, the continuous state representation of the original state space
as well as the neural state space had to be discretized. Both state spaces were
approximated by 4.096 discrete states each (8 bins per dimension).

PI was applied using a fixed discount factor γ = 0.9. After an initial 1.000
steps of random exploration a policy was calculated and subsequently used for
ε-greedy exploration (random action with probability ε = 0.15). A new policy
was generated every 1.000 state transitions.

As shown in fig. 2, the MPEN approach is able to model states which are
suitable to be discretized and used for PI. Note that we chose PI because it
is very sensitive to a violation of the Markov property and therefore adequate

11

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

to verify the reconstruction of the Markov property by the neural state space.
Further it is notable that discretizing the state space of the cart-pole problem
also violates the Markov property. Policies based on the neural state space
outperform those based on the original state space since the neural network
rescales and decorrelates the state variables. This results in a better estimation
of the state transition probability distribution as well as the expected rewards
based on the discretized states.

5 Conclusion and Outlook

A new RNN topology using separated weight sets for past and future states
to avoid dynamic inconsistency was introduced. The topology uses the reward
function or reward function arguments as targets and a set of observables as
inputs. This is of remarkable value for data based RL, since an MDP including
only relevant aspects of a considered observation space can be modeled. This
approach reduces the possible loss of information due to manual input prese-
lection and is a significant step towards autonomous neural applications in RL.
The capabilities of the MPEN approach were successfully demonstrated on the
cart-pole problem.

We are currently working on the combination of continuous RL methods with
the MPEN such as neural fitted Q-iteration [7], neural rewards regression [8],
and the recurrent control neural network [9].

References

[1] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[2] A.M. Schäfer and S. Udluft. Solving Partially Observable Reinforcement Learning Prob-
lems with Recurrent Neural Networks. In Workshop Proc. of the European Conf. on
Machine Learning, pages 71–81, 2005.

[3] G.E. Hinton and R.R. Salakhutdinov. Reducing the Dimensionality of Data with Neural
Networks. Science, 313(5786):504–507, July 2006.

[4] H.G. Zimmermann, R. Grothmann, A.M. Schäfer, and C. Tietz. Identification and Fore-
casting of Large Dynamical Systems by Dynamical Consistent Neural Networks. In New
Directions in Statistical Signal Processing: From Systems to Brain, pages 203–242. MIT
Press, 2006.

[5] A.M. Schäfer, D. Schneegaß, V. Sterzing, and S. Udluft. A Neural Reinforcement Learning
Approach to Gas Turbine Control. In Proc. of the Int. Joint Conf. on Neural Networks,
pages 1691–1696, 2007.

[6] D. Schneegaß. Steigerung der Informationseffizienz im Reinforcement-Learning. PhD
thesis, Luebeck University, 2008.

[7] M. Riedmiller. Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural
Reinforcement Learning Method. In Proc. of the European Conf. on Machine Learning,
pages 317–328, 2005.

[8] D. Schneegaß, S. Udluft, and T. Martinetz. Neural Rewards Regression for Near-Optimal
Policy Identification in Markovian and Partial Observable Environments. In Proc. of the
European Symposium on Artificial Neural Networks, pages 301–306, 2007.

[9] A.M. Schäfer, S. Udluft, and H.-G. Zimmermann. The Recurrent Control Neural Network.
In Proc. of the European Symposium on Artificial Neural Networks, pages 319–324, 2007.

12

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

