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Abstract. The problem of finding the optimal oriented bounding box
(OBB) for a given set of points in R

3, yet simple to state, is computa-
tionally challenging. Existing state-of-the-art methods dealing with this
problem are either exact but slow, or fast but very approximative and
unreliable. We propose a method based on Particle Swarm Optimization
(PSO) to approximate solutions both effectively and accurately. The origi-
nal PSO algorithm is modified so as to search for optimal solutions over the
rotation group SO(3). Particles are defined as 3D rotation matrices and
operations are expressed over SO(3) using matrix products, exponentials
and logarithms. The symmetry of the problem is also exploited. Numer-
ical experiments show that the proposed algorithm outperforms existing
methods, often by far.

1 Introduction

The Oriented Bounding Box problem (OBB) can be stated as follows: given a
set of n points in R

3, find the minimal-volume oriented parallelepiped enclosing
all the points. This question arises in many practical applications and notably in
vision problems. In collision detection for example, intersections are preferably
checked using bounding volumes, such as boxes, spheres or ellipsoids, since it is
computationally more efficient than with complex 3D shapes (convex hull, . . . ).
Oriented bounding boxes are a common choice because of the simplicity of the
intersection test.

The best existing methods for solving the OBB problem can be sorted into
two categories: exact methods and approximations. In the first category, the
state-of-the-art method was proposed by O’Rourke [1]. Based upon the 2D
rotating calipers technique, this 3D adaptation is exact but hard to implement
and it runs with a complexity of O(n3), which is quite inefficient for large data
sets.

In the second category, some heuristics have been proposed using either prin-
cipal component analysis (PCA) or brute-force approaches. PCA based methods
can be implemented easily and produce an approximation very quickly. However,
their precision is very sensitive to the data point distribution and can result in
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far from optimal volumes [2]. Brute-force methods are usually based on a sam-
pling of the search space; they are usually inefficient because they do not exploit
the structure of the problem. For a more detailed state-of-the-art review, the
reader can refer to [3].

The idea presented in this article is to exploit a reformulation of the OBB
problem as an optimization over the rotation group

SO(3) = {R ∈ R
3×3 : RTR = I,det(R) = 1}.

Finding the minimal volume oriented bounding box can be expressed as follows:

min
R∈SO(3)

f(R) = VAABB(RX) = (x′
max − x′

min)(y
′
max − y′min)(z

′
max − z′min)

where R ∈ SO(3) is the rotation matrix, X ∈ R
3×n denotes the set of points

and VAABB is the volume of the so-called axis-aligned bounding box (AABB).
For given R and X, the volume of the AABB is simply obtained by rotating
the set of points X by R: X ′ = RX = (x′, y′, z′) and computing the product of
the span along each rotated direction. As can be observed with a 2D example
in figure 1, the function f(R) is only C0 and presents multiple minima. The
non-differentiable and multimodal aspects of f(R) make it a good candidate for
derivative-free optimization methods, especially global methods [4].

Fig. 1: 2D Oriented bounding box: the volume f(R) is not differentiable
and presents multiple minima.

In this paper, we propose to adapt Particle Swarm Optimization (PSO) to
this new formulation of the OBB problem. Indeed, PSO seems to be a good solver
candidate since it is clearly suited for non-differentiable, multimodal problems
and because it exhibits intrinsic qualities to find a good trade-off between explo-
ration and exploitation of the search domain. In order to achieve this adaptation,
the PSO algorithm has to be modified to fit the SO(3) search space. Some prop-
erties of this manifold are used to keep the proposed method as close as possible
to the original algorithm.

The next sections are organized as follows: section 2 presents the PSO algo-
rithm basics and its adaptation to the special orthogonal group SO(3), section 3
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presents some numerical results showing that the proposed method is faster
and/or more accurate than existing methods, section 4 discusses possible en-
hancements of the method and other ideas that could be further investigated.

2 Adapting PSO to SO(3)

PSO is a stochastic population-based algorithm. Particles are points evolving
in the search space, following simple rules, mimicking the behaviour of social
groups. Points are initialized randomly in the search space and the driving force
of the optimization process is given by the following update equations (iterated
over k), for each particle (indexed by i):

⎧⎪⎪⎨
⎪⎪⎩

vi(k + 1) = w(k)vi(k)︸ ︷︷ ︸
inertia

+ cαi(k) (yi(k)− xi(k))︸ ︷︷ ︸
nostalgia

+ sβi(k) (ŷ(k)− xi(k))︸ ︷︷ ︸
social

xi(k + 1) = xi(k) + vi(k + 1),

where x denotes position, v denotes velocity, y is the personal best position so
far, ŷ is the global best position of the swarm so far ; w is inertia coefficient
(usually dynamic), c and s are adjustable coefficients, and α and β are ran-
dom components. As can be seen, the behaviour of each particle is dictated
by velocity increments composed of three simple components: inertia, cogni-
tion (nostalgic behaviour) and social behaviour. For more in-depth information
about PSO, the reader is referred to [5].

In its original form, PSO is described for particles distributed in R
n so that

x ∈ R
n, y ∈ R

n and that the operations involved in the update equations
(+,−,.) are the usual vectorial addition, difference and scaling. In order to
adapt standard PSO to the SO(3) search space, one must redefine x, v and
the operations mentioned above. Since we are looking for the optimal rotation
matrix, x must be an element of SO(3) and so do y and ŷ. The velocity v is
now an element of the tangent space TxSO(3) to SO(3) centered at x. Since
SO(3) is a Lie group (see, e.g., [6]), we have v = xṽ for some ṽ ∈ so(3), where
so(3) = TISO(3) is the set of all skew-symmetric 3 × 3 matrices. Noting that
the geodesic on SO(3) with initial position x ∈ SO(3) and initial velocity xṽ is
given by x exp(tṽ) (see [6, §VII.8]), the position update in the second equation
can be rewritten using matrix composition:

xi(k + 1) = xi(k) exp(ṽi(k + 1)).

Moreover, given x1 and x2 in SO(3), the initial velocity v = x1ṽ of the geodesic
starting from x1 that goes through x2 at t = 1 is given by ṽ = log(xT

1 x2).
Exploiting this expression for the nostalgia and social components of the velocity
equation, one can write:

ṽi(k + 1) = w(k)ṽi(k) + cαi(k) log
(
xi(k)

T yi(k)
)
+ sβi(k) log

(
xi(k)

T ŷ(k)
)
.
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Note that the key idea behind PSO is preserved with this adaptation: the new
rotation is built using a stochastically weighted combination of the old rotation
(with inertia) and attraction towards both personal and global best rotations.

As figure 2 shows, the difference with classical PSO is that this combination
now occurs in the tangent space centered at xk, and is then retracted to the
SO(3) manifold.

x(k − 1)

INERTIA
NOSTALGIA

y(k)

ŷ(k)

x(k + 1)

x(k)

SOCIAL

SO(3)

Tx(k)SO(3)

Fig. 2: Computation of the position update in the tangent space of SO(3)
centered at x(k). The new iterate x(k + 1) is constructed using a combi-
nation of inertia, nostalgia and social contributions in Tx(k)SO(3) and is
then retracted to SO(3).

Now that the update equations have been modified, the last step needed in
order for PSO to be adapted to the SO(3) manifold is to take the symmetry
of the OBB problem into account. Considering the 2-dimensional problem first,
a rotation matrix belongs to SO(2) and can therefore be represented with a
unique angle θ. Given such an orientation of a bounding rectangle, the corre-
sponding area will clearly be the same for every further rotation of 90 degrees.
This indicates that the search space should be truncated to the first quadrant
only (matrices with orientation in [0, π2 [ ), using the relation: θ′ = θ mod (π2 ).
Furthermore, when computing the angle between two rotation matrices R1 and
R2, represented by angles θ1 and θ2, the shortest distance in the light of this
periodicity should be exploited, using the following computation, so that the
measured angle always lies in ]−π

4 , π
4 ]:

Θ(R1, R2) =

{
θ2 − θ1, if |θ2 − θ1| ≤ π

4
θ2 − θ1 − π

2 sgn(θ2 − θ1), if |θ2 − θ1| > π
4

These properties can be regarded another way. The rows r1 and r2 of a matrix R
in SO(2) form a basis in R

2. Considering all the 2D signed permutation matrices
P in SO(2) (composed of columns pi ∈ {±e1,±e2}), R′ = PR yields 4 different
bases, each time with r′1 and r′2 lying in two consecutive quadrants. Since the
log mapping log(R) measures the “displacement” between the identity and R,
choosing the permutation P that brings r′1 as close as possible to e1 and r′2 to e2
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ensures that the smallest displacement D linking two matrices R1 and R2 can
be computed using D = log(PRT

1 R2).
This can now be extended to the 3-dimensional case. The rows r1, r2 and

r3 of R now form a basis of R3, and with the set of all 3D signed permutations
P in SO(3), R′ = PR yields 24 bases. The permutation can now be chosen
so that r′1 is as close as possible to e1, r

′
2 to e2 and r′3 to e3, and the relation

D = log(PRT
1 R2) still gives the smallest displacement linking R1 and R2.

Taking the periodicity and symmetry into account, the update equations can
finally be written as:⎧⎨
⎩

ṽi(k + 1) = w(k)ṽi(k) + cαi(k) log
(
P1xi(k)

T yi(k)
)

+sβi(k) log
(
P2xi(k)

T ỹ(k)
)

xi(k + 1) = P3xi(k) exp(ṽi(k + 1)),

where P1, P2 and P3 are permutation matrices chosen as described above.

3 Results

As a preliminary experiment, the proposed adaptation of PSO was implemented
using Matlab. Some data sets (available at www.inma.ucl.ac.be/~borckmans)
were chosen presenting various sizes (number of nodes on the convex hull) and
distributions. Table 3 presents the results of this simulation for three of them
and compares the performance of the proposed solution to two state-of-the-art
methods: All-PCA and O’Rourke. The optimal volume is the one obtained by
O’Rourke since it is an exact method. The relative error is measured for PCA
and PSO. Since PSO presents a stochastic component, 100 runs were performed,
stopping after 100 iterations or when no improvement was made for 10 consec-
utive iterations; the best and worst results are presented, as well as the mean
and variance of the relative error. The parameters were chosen as follows:

size = 20, c = 0.5, s = 0.5, w(k) decreasing from 0.9 (k = 1) to 0.4 (k = 100)

Table 3 shows that the proposed algorithm runs faster than the exhaustive
O’Rourke method, without compromising the quality of the solutions. PCA, on
the other hand, runs extremely fast but only produces rough approximations.
The experiment showed that PSO sometimes leads to situations where the par-
ticles prematurely converge to a local minimum. This explains the difference
between the best and worst results and indicates that the proposed method
needs improvements regarding its robustness.

4 Conclusion

This preliminary experiment indicates that, while being a stochastic method,
PSO shows to be both efficient and relatively reliable to solve the OBB prob-
lem. Furthermore, this application is encouraging the development of PSO over
different search spaces and manifolds.
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data set method time (s) relative error (%)

set1 O’Rourke 29 · 100 0
132 nodes PCA 20 · 10−5 28.04

PSO 55 · 10−1 min: 21 · 10−14 max: 10 · 10−2

mean: 17 · 10−2 var: 33 · 10−3

set2 O’Rourke 14 · 103 0
6479 nodes PCA 38 · 10−2 114.9

PSO 87 · 10−1 min: 15 · 10−12 max: 56 · 10−2

mean: 17 · 10−2 var: 46 · 10−3

set3 O’Rourke 22 · 102 0
1560 nodes PCA 49 · 10−4 83.8

PSO 67 · 10−1 min: 15 · 10−12 max: 56 · 10−2

mean: 17 · 10−2 var: 46 · 10−3

Fig. 3: Comparison of the performance of the proposed PSO algorithm with PCA and
O’Rourke.

Some extensions of the proposed algorithm can be considered for further
work. Among the many variations of the PSO algorithm introduced since 1995,
strategies dealing more efficiently with multimodal objectives could be valuable.
Approaches involving self-adaptive coefficients may also add robustness to the
proposed method. Finally, a hybridization of PSO with a directional search
method (compass search, MADS, . . . ) could be envisaged as proposed in [7].
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