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Abstract. The statistical properties of the likelihood ratio test statistic
(LRTS) for mixture-of-expert models are addressed in this paper. This
question is essential when estimating the number of experts in the model.
Our purpose is to extend the existing results for mixtures (Liu and Shao,
2003) and mixtures of multilayer perceptrons (Olteanu and Rynkiewicz,
2008). In this paper we study a simple example which embodies all the
difficulties arising in such models. We find that in some cases the LRTS
diverges but, with additional assumptions, the behavior of such models
can be totally explicated.

1 Introduction

Derived from neural networks literature, Mixtures of Experts (ME) (Jacobs et.
al., 1991) and Hierarchical Mixtures of Experts (HME) (Jordan and Jacobs,
1994) generalize linear regression models. HME are mixtures of “experts” (for
example, linear regression models) organized in a tree-structured network. The
network assigns a weight which, unlike mixture regression models, may depend
on the input x to each expert and then produces an output which combines the
outputs produced by all experts according to their weights. The ME discussed
in this paper is a particular case of HME, where the network has only one layer.

The conditional density of a ME can be generally written as:

g (y|x, φ) =
∑p

i=1 πνi
(x)gθi

(y|x),

where φ =
(

νT
1 , ..., νT

p , θT
1 , ..., θT

p

)

is the parameter of the model. Usually, the
weights or “gating functions” are chosen to be logistic type

πνi
(x) =

exp(νT
i x)

Pp
j=1 exp(νT

j x)
,

while gθ may be Poisson, Binomial or Gaussian distributions.
When the model is assumed to be correctly specified, the maximum likeli-

hood estimates converge to the true values of the parameters and are normally
distributed (Jiang and Tanner, 1999). However, the true model is not usually
known and the true parameter is unidentifiable. This paper studies the asymp-
totic behavior of the likelihood ratio test statistic (LRTS) for mixtures of experts
and extends the results for mixtures of Liu and Shao (2003). In Section 2, we
present the model and a simple example. An example of divergence is given in
Section 3, while Section 4 describes the convergence of the LRTS under some
additional assumptions.
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2 The model and a simple example

Let (Xk, Yk)k∈Z
be a sequence of independent and identically distributed random

vectors defined on a probability space (Ω,K, P). Let P = {gθ, θ ∈ Θ} be a set of
densities with respect to some positive measure λ, where Θ is a finite-dimensional
set. Let us consider an observed sample {(x1, y1), ..., (xn, yn)} of the sequence
(Xk, Yk). For every xk, the true density of Yk conditionally to Xk = xk is

g0 (yk | xk) =
∑p0

i=1 πνi
0(x)gθi

0 (yk | xk),

where gθ0 ∈ P , πνi
0(x) ≥ 0,

∑p0

i=1 πνi
0(x) = 1 and φ0 =

(

θ0
1, ..., θ

0
p0

, ν0
1 , ..., ν0

p0

)T

is the global parameter of the model. Let us remark that this model is the
general parameterization of mixtures of experts. In the next section, a simple
example of such model is studied.

2.1 Simple mixture of experts

Let G be the set of possible conditional densities:

G = {g (y | x) = πν(x)gb (y | x) + (1 − πν(x))f (y | x) , πν(x) ∈ [0; 1], gb ∈ P}

with P =
{

gb(x) = 1√
2π

e−
1
2 (y−bx)2 , b ∈ Θ ⊂ R

}

the set of conditional densities

and f (y | x) = 1√
2π

e−
1
2y2

. This model is clearly a particular case of the general

mixture of expert model and is a simple example of mixture of regressions with
Gaussian noise. Let

ln (g) =
∑n

k=2 ln g (yk | xk)

be the conditional log-likelihood function of ((x1, y1), · · · , (xn, yn)). We want to
know whether the true model is really a mixture regression model (i.e. b 6= 0 and
πν(x) 6= 0) or the observations are independent (b = 0 or ∀x, πν(x) = 0). We
need to look at the likehood ratio test statistic (LRTS) to answer this question.
The LRTS is defined as:

2λn = 2

(

sup
g∈G

ln(g) − ln(f)

)

= 2 sup
g∈G

πν(x)gb (y | x) + (1 − πν(x))f (y | x)

f (y | x)
(1)

For regular statistical models, the LRTS converges to a χ2 distribution. This is
no longer the case with this model. Let us first recall a result which gives an
approximation of the LRTS.

2.2 Approximation of the LRTS

First, we have to introduce some definitions and properties.

• The extended set of score-functions S is defined as:

S =

{

sg =
g
f
−1

‖ g
f
−1‖

L2(µ)

, g ∈ G
}

.
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• Consider the extended set of score-functions S endowed with the norm
‖·‖L2(µ). For every ε > 0, we define an ε-bracket by

[l, u] = {f ∈ F , l ≤ f ≤ u} such that ‖u − l‖L2(µ) < ε. The ε-bracketing
entropy is

H[·]
(

ε,S, ‖·‖L2(µ)

)

= ln
(

N[·]
(

ε,S, ‖·‖L2(µ)

))

,

where N[·]
(

ε,S, ‖·‖L2(µ)

)

is the minimum number of ε-brackets necessary

to cover S.

• With the previous notations, we introduce the following assumption (B):

for all η > 0, denote Gη :=
{

g ∈ G, ‖ g
f
− 1‖2 ≤ η

}

and Sη := {s ∈ S, g ∈ Gη}.
Assume that G is Glivenko-Cantelli and that there exists η > 0 such that

∫ 1

0

√

H[·]
(

ε,Sη, ‖·‖L2(µ)

)

dε < ∞.

Then the set Sη is Donsker under (B).

• Let us also define the limit-set of scores D
{

d ∈ L
2(µ) | ∃(gn) ∈ G, ‖ gn−f

f
‖L2(µ) −−−−→

n→∞
0, ‖d− sgn

‖L2(µ) −−−−→
n→∞

0
}

.

By putting gt = gn for t ∈ [0, 1] and n ≤ 1
t

< n + 1, we obtain that,
for all d ∈ D, there exists a parametric path (gt)0≤t≤1 such that ∀t ∈
[0, 1], gt ∈ G, t → ‖ gt−f

f
‖L2(µ) is continuous in 0, ‖ gt−f

f
‖L2(µ) −−−→

t→0
0 and

‖d − sgt
‖L2(µ) −−−→

t→0
0.

The following theorem can be stated (Gassiat, 2002):
Theorem 1 : Under the assumption (B),

2λn = supd∈D

(

max
{

1√
n

∑n
i=2 d(Yi, Xi); 0

})2

+ oP (1)

In order to derive the behaviour of the LRTS, two cases have to be analyzed.
The first one is when ∃δ > 0 such that ∀ν, E [πν(X)] ≥ δ. The second one is if one
can find a sequence of parameters ν1, · · · , νn such that limn→∞ E [πνn

(X)] = 0.

3 Divergence of LRTS

The LRTS can be divergent if there exists a sequence of parameters ν1, · · · , νn, · · ·
such that limn→∞ E [πνn

(X)] = 0. Indeed, for such sequence we can have
‖ ln(g) − ln(f)‖ → 0 with b 6= 0.

For sake of simplicity, assume that the probability function πν(X) is constant.
Then, if the quantity
∥

∥

∥
exp

(

− b2

2 X2 + bY X
)

− 1
∥

∥

∥

L2(µ)
is finite, the score functions are well defined.

Let us study
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∥

∥

∥
exp

(

− b2

2 X2 + bY X
)

− 1
∥

∥

∥

2

L2(µ)
=

1
2π

∫ ∫

(

exp
(

− b2

2 x2 + byx
)

− 1
)2

exp
(

− 1
2x2
)

exp
(

− 1
2y2
)

dxdy =

1
2π

∫ ∫

(

exp
(

−b2x2 + 2byx
)

− 2 exp
(

− b2

2 x2 + byx
)

+ 1
)

exp
(

− 1
2x2
)

exp
(

− 1
2y2
)

dxdy

The integral of the dominant term (the first) is:

I (b) = 1
2π

∫ ∫

exp
(

−b2x2 + 2byx
)

exp
(

− 1
2x2
)

exp
(

− 1
2y2
)

dxdy

= 1
2π

∫ ∫

exp
(

−
(

b2 + 1
2

)

x2 + 2bxy − 1
2y2
)

dxdy

= 1
2π

∫ ∫

exp

(

−
(

√

b2 + 1
2x − b√

b2+ 1
2

y

)2

−
(

1
2 − b2

b2+ 1
2

)

y2

)

dxdy

=
√

2b2+1√
2π

∫

exp
(

−
(

1
2 − b2

b2+ 1
2

)

y2
)

dy

Finally for − 1√
2

< b < 1√
2
,

∥

∥

∥
exp

(

− b2

2 x2 + byx
)

− 1
∥

∥

∥

L2(µ)
< +∞

and the score function is well defined. The set of limit score functions contains
the score functions:

{

νb (x, y) =
gb(y,x)

f(y,x)

‖ gb(y,x)

f(y,x)
‖L2(µ)

, b ∈] − 1√
2
; 1√

2
[

}

Note that the distribution of the LRTS λn for a finite number of possible
parameters b1, · · · , bm will always converge to a m-dimensional normal distribu-
tion with covariance

(

E
(

νbi
(x, y) νbj

(x, y)
))

1≤i,j≤m
. Suppose that an arbitrary

number of“almost” uncorrelated random variables in C can be found, then λn

can take an arbitrarily large value since the maximum of m independent samples
from standard normal distribution is approximately

√
2 logm. Hence, Fukumizu

(2003) has shown that if a sequence b1, · · · , bm, · · · exists so that

limm→∞ νbm
(x, y)

P→ 0

then the likelihood ratio Tn diverges to infinite. Here, we get

limb→ 1√
2
,b< 1√

2

∥

∥

∥
exp

(

− b2

2 x2 + byx
)

− 1
∥

∥

∥

L2(µ)
= +∞

So, for each sphere B of R
2, centered on the origin, if (x, y) ∈ B:

limb→ 1√
2
,b< 1√

2

exp
“

− b2

2 x2+byx
”

−1
‚

‚

‚
exp

“

− b2

2 x2+byx
”

−1
‚

‚

‚

L2(µ)

= 0

and
exp

“

− b2

2 x2+byx
”

−1
‚

‚

‚
exp

“

− b2

2 x2+byx
”

−1
‚

‚

‚

L2(µ)

converges to 0 in probability for b → 1√
2
, b <

1√
2
. With the choice bm = 1√

2
− 1

m
, we get limm→∞ νbm

(x, y)
P→ 0 and the LRTS

is divergent.
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4 Convergence of LRTS

In this section we suppose that (∃)δ > 0 such that (∀)ν, E (πν(X)) ≥ δ > 0.
Since πν(X) ≥ 0, then (∃)A ⊆ R such that λ(A) = η > 0 and πν(x) > δ for any
x ∈ A. The generalized score-function can be rewritten using the following:

g
g0

− 1 = πν(x)gθ(y|x)+(1−πν(x))f(y|x)
f(y|x) − 1

= πν(x)
(

gθ(y|x)
f(y|x) − 1

)

sg =
g

g0
−1

‖ g
g0

−1‖L2
=

πν(x)
“

gθ(y|x)

f(y|x)
−1

”

‖πν(x)
“

gθ(y|x)

f(y|x)
−1

”

‖L2

The model is parameterized by φ = (θ, ν) ∈ Θ × V ⊆ R
2 compact set and θ0

belongs to the interior of Θ. Since E (πν(X)) ≥ δ > 0, we have that g = g0 ⇔
θ = θ0. Thus, the model is identifiable in θ and unidentifiable in ν. For any
fixed ν ∈ V , we have the following Taylor expansion around θ0:

l(θ,ν) − 1 = (θ − θ0)
∂
∂θ

l(θ0,ν) + o (|θ − θ0|)
where l(θ,ν) = gθ

f
. Hence,

sg = sφ=(θ,ν) =
g

g0
−1

‖ g
g0

−1‖L2

=
πν(x)[(θ−θ0)

∂
∂θ

l(θ0,ν)+o(|θ−θ0|)]
‖πν(x)[(θ−θ0)

∂
∂θ

l(θ0,ν)+o(|θ−θ0|)]‖L2

= β
πν(x)[ ∂

∂θ
l(θ0,ν)+o(1)]

‖πν(x)[ ∂
∂θ

l(θ0,ν)+o(1)]‖L2

where |β| = 1.

In the Gaussian case, gθ(y|x) = 1√
2π

exp
(

− 1
2 (y − θx)

2
)

, the first derivative

of l(θ,ν) is ∂
∂θ

l(θ0,ν)(x, y) = x (y − θ0x), hence the directional score functions are

not linearly correlated (βπν (x) ∂
∂θ

l(θ0,ν)(x, y) 6= 0 for any β and ν ∈ V ) and we
may apply Lemma 4.1 in Liu and Shao (2003). According to this lemma, when
|θ − θ0| → 0, the set of limit score functions is F , where

F =
{

Ω
(

βπν(x) ∂
∂θ

l(θ0,ν)(x, y)
)

, |β| = 1, ν ∈ V
}

and Ω(f) = f
‖f‖L2

. According to Theorem 3.1 in Liu and Shao (2003), the LRTS

satisfies:

lim 2λn = supsg∈F
(

Wsg
∨ 0
)2

where
{

Wsg
, sg ∈ F

}

is a centered Gaussian process with continuous sample
paths and covariance kernel E (Ws1Ws2 ) = E (s1s2). In our case,

F = {Ω (βπν(x)x (y − θ0x)) , |β| = 1, ν ∈ V }
and

E (s1s2) =
β1β2E(X2πν1(X)πν2(X))

‖β1πν1(X)X(Y −θ0X)‖L2‖β2πν2(X)X(y−θ0X)‖L2
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5 Conclusion

If the number of experts is overestimated, mixture-of-expert models are no longer
regular since the Fisher information matrix is singular. In this case, the LRTS
provides an insight on the overfitting of the model. Although for regular models
overfitting is low (some degrees of freedom of a χ2 law), the simple example
studied above shows that overfitting is more significant in the case mixture-
of-expert models. The example of this paper illustrates the two main behaviors
that one can expect: moderate overfitting if the mixing probabilities are bounded
from below and strong overfitting if the mixing probabilities can be as small as
possible. Generalization to general mixture-of-experts models should not be too
difficult.
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