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Abstract. In this paper we present an advanced Nearest Prototype Clas-
sification to handle data points with unsharp class assignments. Therefore
we extend the Soft Nearest Prototype Classification as proposed by Seo
et al. and its further enhancement working with fuzzy labeled prototypes
as introduced by Villmann et al. We adapt the cost function and derive
appropriate update rules for the prototypes. We assess the performance
on a toy data set and a real-world problem and compare the classification
result with the results obtained by Fuzzy Robust Soft LVQ by means of
Fuzzy Cohen’s Kappa.

1 Introduction

Nearest prototype classification (NPC) [4] is a method to adapt a set of class
dependent prototypes. They are positioned to optimize the classification of
the data points according to their distances. A well known and widely used
learning scheme using nearest prototype classification is the Learning Vector
Quantization (LVQ) as introduced by Kohonen [4]. The original version has
been the basis for a whole family of supervised learning algorithms like LVQ 2.1
[4], GLVQ [6], SLVQ [8], and RSLVQ [8] to name just a few. Seo et al. developed
a soft version for the nearest prototype classification called SNPC which uses
the Gaussian mixture approach to model soft assignments of the data points to
their representing prototypes [7]. This method is a stochastic gradient descent
on a cost function incorporating the probability density of the data points and
can be interpreted as an annealed version of LVQ.

In NPC the prototypes realize only a crisp classification because of their
unique class dependence. This has the disadvantage that overlapping classes
can not be described appropriately. Therefore Villmann et al. established a new
learning scheme called FSNPC which utilizes fuzzy prototype vectors [9]. The
FSNPC is also based on the Gaussian mixture model.

Yet all these algorithms require crisp labeled training data. But there are
various applications, for example in the medical or biological field like cancer
identification based on tissue samples or the identification of barley grain tissue
as described in the experimental section, where there is only a diffuse classifica-
tion possible. And sometimes the training data can only be obtained by insecure
methods like the manual subjective evaluation of specimen or other findings. Re-
cently an approach called FRSLVQ for handling this type of fuzzy labeled data
was introduced in [3]. This lack of alternative learning schemes motivated us
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to find another way to obtain prototypes for fuzzy data. Therefore we further
extended the FSNPC to handle unsharp labeled data points implying a level
of uncertainty within the data set itself. We developed an appropriate learning
scheme based on a Gaussian mixture model and fuzzy prototypes.

We demonstrate the ability of the resulting learning scheme on a 2-dimensional
toy data set consisting of two overlapping Gaussian distributions and on a real
world problem classifying barley grain tissue samples. Assessing the performance
of our algorithm requires a method to compare fuzzy classifiers with each other,
which can be done using Fuzzy Cohen’s Kappa [11].

2 FSNPC - a short review

Since our proposed method is an extension of the FSNPC as introduced by [9],
we will give a short review of this algorithm. FSNPC itself is based on the Soft
Nearest Prototype Classification by Seo et al. [7]. While SNPC works with
crisp class information for the prototypes, FSNPC is working with fuzzy labeled
prototypes.

Considering a set of N training data points S = {(xi, yi)}Ni=1 and a set of
M initially unknown labeled prototypes T = {(wj , cj)}Mj=1 with xi,wj ∈ RD.
yi is the assigned class label for data point xi with yi ∈ I and cj is the fuzzy
label of prototype wj , which indicates the proportionate responsibility of wj to

all classes C with
∑C

l=1 c
l
j = 1 and clj ≥ 0. During training these labels have to

be adjusted automatically.
The aim of FSNPC is to minimize the cost function

E(T ,S) =
1

N

N∑
k=1

lc((xk, yk), T ) (1)

where the local costs are given by

lc(xk, yk) =
M∑
j=1

P (j|xk)(1− cyk

j ). (2)

Since the crisp class information for the prototypes, which is required for SNPC
learning, is no longer available, a corresponding learning scheme has been derived
by [9] as

∆wl = − αw

2σ2
P (l|x)(1− cl − lct)

∂(x,wl)

∂(wl)
(3)

with learning rate αw. The posterior probability

P (j|x) =
exp

(
−d(x,wj)/(2σ

2)
)∑

k exp (−d(x,wk)/(2σ2))
(4)

indicates, that data point x was generated by the component j. For the special
case of cj resembling a crisp assignment to one class, equation (2) is equivalent
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to the local cost function of the SNPC lc(xk, yk) =
∑M

j=1 P (j|xk)(1 − δyk,cj ),
where cj is is the assigned class label for prototype wj with cj ∈ I and the
Kronecker symbol δyk,cj is one if yk = cj and zero otherwise.
Parallely to adapting the prototypes, their fuzzy labels can be optimized by

∆cj = −αcP (j|xk) (5)

followed by a subsequent normalization. αc is the learning rate.
Once the prototypes are determined, new data points x can be classified

according to

c = argmax
c′

∑
j:cj=c′

P (j|x) (6)

As with the SNPC there is a window rule specifying the active region for the
prototype update. By denoting T = P (l|xt)(1 − cl − lct) in equation (3) and
rewriting it to T0 = (Tlc−Tcl

) ·Π(cl) with Tlc = lc(1− lc) and Tcl
= cl(1 + cl),

it can be shown that −2 ≤ T0 ≤ 0.25 since 0 ≤ Tlc ≤ 0.25 and Tcl
≤ 1. The

term Π(cl) is given by

Π(cl) =
exp(−d(x,wl)/(2σ

2)∑
l′(1− cl − cl′)/ exp(−d(x,wl′)/(2σ2)

. (7)

The absolute value of T0 has to be significantly different from zero to have
a valuable contribution in the update rule. This yields the window condition
0 � |T0|, which can be obtained by balancing the local loss lc and the value of
the assignment variable cl.

3 FSNPC for fuzzy labeled data points

Now we extend the FSNPC to handle fuzzy labeled data points additionally
to the fuzzy labeled prototypes. To adapt the cost function of the FSNPC to
the fuzzy labeled training data we remodel the crisp class assignments yi of the

data points xi to a C-dimensional possibilistic vector yi with
∑C

k=1 y
k
i = 1 and

yk
i ≥ 0 where C again is the number of classes. Hence, we consider a training

data set S = {(xi,yi)}Ni=1 with unsharp class assignments yi. The function of
the local costs now takes the proportionate class assignments y of the training
data points x into account and will therefore change to

lc(xk,yk) =

M∑
j=1

P (j|xk)(yk − cj)
2 (8)

where (yk−cj)2 is used as an abbreviation for (yk−cj)T (yk−cj). Note that for
the local cost yields lc(xk, yk) ≤ 1, because yk and cj are both possibilistic class
assignments. The cost function E(S, T ) (1), as the sum over the local costs of
all the data points, will not change. The update rule for the prototypes, which
aims to minimize the local costs, can again be derived by a stochastic gradient
descent on the local costs (8) with respect to the prototypes wj and is given as

∆wj = − α

2σ2
P (j|x)((y − cj)

2 − lc)∂d(x,wj)

∂wj
(9)
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where lc is used as an abbreviation for lc(xk,yk).
The fuzzy prototype labels cj can also be optimized by

∆cj = −2P (j|x)(y − cj), (10)

again followed by subsequent normalization.
In complete analogy to the FSNPC a window rule for the active region for

the prototype update can be derived by setting T = P (j|x)((y − cj)
2 − lc).

Using the Gaussian form (4) for P (j|x) the term T can be rewritten as T =
T0 ·Π(x,y,wj , cj), with

Π(x,y,wj , cj) =
exp(−d(x,wj)/(2σ

2)∑
k((y − cj)2 + (y − ck)2) exp(−d(x,wk)/(2σ2)

(11)

and T0 = ((y−cj)
T (y−cj))

2− lc2. Obviously, lc2 ≤ 1 because lc ≤ 1. Further,
because all components of both y and cj are less or equal to one and greater or
equal to zero, (y − cj)

T (y − cj) ≤ K, where K is a data dependend constant.
Hence we have −K2 ≤ T0 ≤ K2 + 1. The absolute value of T0 has to be
significantly different from zero to have a valuable contribution to the update.
Therefore |T0| � 0 defines a window rule as it is known from SNPC or LVQ.

4 Experiments

We applied our extended version of the FSNPC to two data sets with fuzzy
labeled data points: an artificial and a real world data set.

In order to evaluate the classification accuracy, we compute Fuzzy Cohen’s
Kappa κ as introduced in [2]. This coefficient always lies in the interval [−1; 1]
and measures the agreement of two classifiers. The degree of classification agree-
ment reaches from slight agreement with 0 < κ ≤ 0.2 over fair, moderate, and
substantial up to perfect agreement with 0.8 < κ ≤ 1.0. Values beneath zero
indicate a poor or accidential agreement only (see [5] for details).

As mentioned before there is a lack of classifiers based on fuzzy data assign-
ments. For this reason, we can only assess the performance of our algorithm
with respect to FRSLVQ. Comparison with classifiers based on crisp labeled
data would require a modification on the data set itself and the interesting fuzzy
aspect would get lost. Furthermore Fuzzy Cohen Kappa is not suitable for com-
paring fuzzy with crisp classifiers [11].

4.1 Artificial data set

The first experiment consists of a data set of two overlapping Gaussian clusters
of equal variance in a two-dimensional space. We set the distribution’s mean
values to µ1 = [−1; 0] and µ2 = [1; 0]. For the variance we choose different
values. Each cluster consists of 500 samples. We define the class memberships
y of sample x depending on the first component x(1). For the region between
the means −1 ≤ x(1) ≤ 1 we choose a linear relationship and a crisp class
assignment for data points outside of the overlap with x(1) < −1 and x(1) > 1,
respectively (figure 1, left).
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Fig. 1: Artificial data. Left: fuzzy region between the centers of the Gaussians.
Right: visualization of the relationship between the variance and the final pro-
totype position - with increasing variance the prototypes move away from the
decision boundary.

We perform several runs with a varying number of prototypes and different
settings for the variance. The initial fuzzy prototype labeling is set to around
50% for each class. In each training step the prototypes and their fuzzy class
assigments are updated. The latter allowed the protoypes to switch their affilia-
tion to the classes. After successful training classification agreement of κ ≈ 0.94
(FRSLVQ κ ≈ 0.83) was reached for the trained data. Comparing the agree-
ment of the classification of untrained data points with the expected results gives
κ ≈ 0.87 (FRSLVQ κ ≈ 0.78). All these indicate substantial to perfect agree-
ment in terms of Fuzzy Cohen’s Kappa. Comparing the classification results
obtained by FRSLVQ and our extended FSNPC version we obtain κ = 0.63.

Further can be observed, that contrary to the FSNPC, where the prototypes
get positioned near the decision boundary, our extended version behaves differ-
ently. The prototypes tend to move into regions of the data space, where there
is a higher degree of classification agreement within the data set (figure 1, right).
The more crisp the labels of the data points the more attractive is this region
to the prototypes. We already observed this particular behavior by comparing
the RSLVQ and its fuzzy version FRSLVQ [3].

4.2 Real-world problem

In our second experiment we used a dataset consisting of a series of transverse
sections of barley grains at different developmental stages which also has been
used in [1], [3], and [10]. The tissue samples can be classified into 11 different
types like nuclear epidermis, transfer cell, and chlorophyll layer. The classifica-
tion of these samples was done manually and especially for border tissue there
was no distinct type identification possible. Therefore about 50% of the 4418
data points have fuzzy class assignments. Each data point is described by means
of 144 features. For training and testing the dataset was randomly split into two
groups of 3800 and 618 data points, respectively.

The agreement between the classification of FSNPC and FRSLVQ is averag-
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ing κ ≈ 0.72, which implies a substantial agreement. Comparing the classifica-
tion result of our method to the original data, gives a Fuzzy Cohen Kappa value
of κ ≈ 0.64. This also indicates a substantial agreement. This lower κ-value is
due to the characteristic of the data set, which contains a great amount of crisp
labeled data points, which is disadvantageous for the calculation of Fuzzy Cohen
Kappa [11].

5 Conclusion

We introduced an extension for the FSNPC to handle fuzzy labeled data points.
The rules for the prototype update as well as the update of their fuzzy class
assignments were derived by a stochastic gradient descent on the cost func-
tion, which incorporates the fuzzy data assignments. We applied this extended
FSNPC to two exemplary settings showing a substantial agreement with the
expected classification. Due to a lack of other fuzzy classifiers besides FRSLVQ
there were no further comparison in terms of accuracy possible. The character-
istic behavior, that the prototypes of fuzzy labeled data sets tend to move away
from the decision boundary, needs to be further investigated in future studies.
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