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Abstract. In our previous work we have discussed the training method of
a support vector classifier by active set training allowing the solution to be
infeasible during training. In this paper, we extend this method to training
a support vector regressor (SVR). We use the dual form of the SVR where
variables take real values and in the objective function the weighted linear
sum of absolute values of the variables is included. We allow the variables
to change signs from one step to the next. This means changes of the
active inequality constraints. Namely, we solve the quadratic programming
problem for the initial working set of training data by Newton’s method,
delete from the working set the data within the epsilon tube, add to the
working set training data outside of the epsilon tube, and repeat training
the SVM until the working set does not change. We demonstrate the
effectiveness of the proposed method using some benchmark data sets.

1 Introduction

In a support vector machine (SVM), the input space is mapped into a high-
dimensional feature space, and because the mapping function is not explicitly
treated by the kernel trick, usually the SVM is trained in the dual form, where the
number of variables is the number of training data in pattern classification and
twice the number of training data for function approximation. Thus to reduce
the number of variables in training, decomposition techniques are used. There
are fixed-size chunking [1] and variable-size chunking [2]. In fixed-size chunking,
we do not keep all the support vector candidates. The most well-known training
method using fixed-size chunking is sequential minimal optimization (SMO) [3].
It optimizes two data at a time. In variable-size chunking, we keep support
vector candidates in the working set and when the algorithm terminates, the
working set includes support vectors. Training based on variable-size chunking
is sometimes called active set training because the constraints associated with
support vector candidates satisfy the equality constraints and are called active
and the working set active set.

Because the coefficient vector of the hyperplane is expressed by the kernel
expansion, substituting the kernel expansion into the coefficient vector, the SVM
in the primal form can be solvable. Based on this idea Chapelle [4] proposed
training the SVM in the primal form. By this method, at each step the quadratic
programming program for the active set is solved by Newton’s method and
from the active set variables that are no longer support vectors are deleted and
violating variables are added to the active set. In [5], this method is extended to
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dual L2 SVMs, where at each step variables are allowed to be infeasible. Because
in the dual form kernel expansion is not used and the coefficient matrix is positive
definite, training in the dual form was usually faster than in the primal.

In this paper we propose training L2 support vector regressors (SVRs) in the
dual form in the similar way as in [5]. We use Mattera et al.’s formulation of the
SVR [6], whose number of variables is the number of training data. Then the
dual variables take real values. The training algorithm is as follows. Starting
from the initial working set, we repeatedly solve the dual quadratic programming
problem, delete from the working set the variables which are within the epsilon
tube and add to the working set the data which are outside of the epsilon tube
until the same working sets are obtained.

In Section 2, we explain L2 SVRs in the dual form, and in Section 3 we
discuss training methods of SVRs. In Section 4, by computer experiment we
demonstrate the effectiveness of the proposed method for some benchmark data
sets.

2 L2 Support Vector Regressors in the Dual Form

Let the M training input-output pairs be (xi, yi) (i = 1, . . . , M), where xi is
the ith training input and yi is the associated output. The L2 SVR is trained
by solving

minimize Q(w, b, ξ, ξ∗) =
1
2
‖w‖2 +

C

2

M∑
i=1

(ξ2
i + ξ∗2i ) (1)

subject to yi − w�φ(xi) − b ≤ ε + ξi for i = 1, . . . , M, (2)
w�φ(xi) + b − yi ≤ ε + ξ∗i for i = 1, . . . , M, (3)
ξi ≥ 0, ξ∗i ≥ 0 for i = 1, . . . , M, (4)

where φ(x) is the mapping function to the feature space, w is the coefficient
vector of the hyperplane in the feature space and b is its bias term, ε is the
parameter to define the epsilon tube, ξi and ξ∗i are slack variables, and C is the
margin parameter that determines the trade-off between the magnitude of the
margin and the estimation error of the training data.

The above optimization problem can be converted into the dual form in-
troducing nonnegative slack variables αi and α∗

i associated with the inequality
constraints (2) and (3), respectively. Then the number of variables of the sup-
port vector regressor in the dual form is twice the number of the training data.
But because nonnegative dual variables αi and α∗

i appear only in the forms of
αi − α∗

i and αi + α∗
i and both αi and α∗

i are not positive at the same time, we
can reduce the number of variables to half by replacing αi −α∗

i with real-valued
αi and αi +α∗

i with |αi| [6]. Then, we obtain the following dual problem for the

118

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



L2 support vector regressor:

maximize Q(α) = −1
2

M∑
i,j=1

αi αj

(
K(xi,xj) +

δij

C

)

−ε

M∑
i=1

|αi| +
M∑
i=1

yi αi (5)

subject to
M∑
i=1

αi = 0, (6)

where αi are dual variables associated with xi and take real values, K(x,x′) =
φ�(x)φ(x) is the kernel, and δij is Kronecker’s delta function. In the computer
experiment we use the RBF kernel: K(x,x′) = exp(−γ‖x − x′‖2), where γ is
the parameter to control the radius of the spread.

The KKT complementarity conditions are

αi (ε + ξi − yi + w�φ(xi) + b) = 0 for αi ≥ 0, i = 1, . . . , M, (7)
αi (ε + ξi + yi − w�φ(xi) − b) = 0 for αi < 0 i = 1, . . . , M, (8)

C ξi = |αi| for i = 1, . . . , M. (9)

Therefore, b is obtained by

b =

⎧⎪⎨
⎪⎩

yi − w�φ(xi) − ε − αi

C
for αi > 0,

yi − w�φ(xi) + ε − αi

C
for αi < 0, i ∈ {1, . . . , M}.

(10)

By the formulation, L2 SVRs are very similar to L2 SVMs. If the value of
ε is very small almost all training data become support vectors. In such a case
the L2 SVR behaves very similar to the least squares (LS) SVRs. And for ε = 0
the L2 SVR is equivalent to the LS SVR.

3 Training Methods

We solve the equality constraint (6) for one variable and substitute it into (5).
Then the optimization problem is reduced to the maximization problem without
constraints. We divide the variables into the working set and the fixed set and
solve the subproblem for the working set fixing the variables in the fixed set. In
the next iteration process, we delete the variables that are within the ε-tube from
the working set and add, from the fixed set, the variables that do not satisfy the
KKT conditions and iterate optimizing the subproblem until the same solution
is obtained. We discuss the method more in detail.

Consider solving (5) and (6) for the index set S. Solving the equality con-
straint in (6) for αs (s ∈ S), we obtain

αs = −
∑
i�=s,
i∈S

αi. (11)
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Substituting (11) into (5), we obtain the following optimization problem

maximize Q(αS) = c�S α′
S − 1

2
α′

S
�

KS α′
S , (12)

where αS = {αi|i ∈ S}, α′
S = {αi|i �= s, i ∈ S}, cS is the (|S| − 1)-dimensional

vector, KS is the (|S| − 1) × (|S| − 1) positive definite matrix, and

cSi =

⎧⎨
⎩

yi − ys for D(xi, yi) ≥ 0, D(xs, ys) ≥ 0
yi − ys − 2 ε for D(xi, yi) ≥ 0, D(xs, ys) < 0
yi − ys + 2 ε for D(xi, yi) < 0, D(xs, ys) < 0 i �= s, i ∈ S

(13)

KSij = K(xi,xj) − K(xi,xs) − K(xs,xj)

+K(xs,xs) +
1 + δij

C
for i, j �= s, i, j ∈ S, (14)

where cSi is the ith element of cSi and D(x, y) = y − φ(xi) + b.
If ε = 0, in (13), cSi = yi − ys irrespective of the signs of D(xi, yi) and

D(xs, ys). Thus, similar to LS SVRs, we can solve (12) by a single matrix
inversion.

Initially, for positive ε, we set some indices to S and set αi = 0 (i ∈ S) and
b = 0. Therefore, D(xi, yi) = 0. Thus, in (13), cSi is set according to the signs
of yi and ys. We solve (12):

α′
S = K−1

S cS . (15)

We calculate b using (10). Because of ε, the b values calculated by different
αi in S may be different. Thus we calculate the average of bs. If training data
associated with the variables in S are within the ε-tube, we delete these variables
and add the indices of the variables to S that violate KKT conditions. If the
working sets and cSi are the same for the consecutive two iterations, the solution
is obtained and we stop training. This stopping condition is different from that
for the SVM discussed in [5] because of the absolute value of αi in the objective
function.

The procedure for training the L2 SVR is as follows.

1. Set the indices associated with h training data to set S and go to Step 2.

2. Calculate α′
S using (15) and using (11) obtain αs. Calculate bs for i ∈ S

using (10) and calculate the average of bs.

3. Delete from S the indices of xi that satisfy |D(xi, yi)| ≤ ε. And add to S
the indices associated with at most h most violating data, namely xi that
satisfy |D(xi, yi)| > ε from the largest |D(xi, yi)| in order. If the solution
is obtained, stop training. Otherwise, go to Step 2.

Because the proposed method includes matrix inversion with the size of |S|−
1, training will become slow or prohibitive if the number of support vectors is
very large. Therefore, the proposed method will be suited for small or medium
size regression problems.
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Table 1: Approximation errors of LS, L1, and L2 support vector regressors
LS L1 L2

Abalone [7] 1.51 1.48 1.51
Boston 5 [8] 0.0264 0.0270 0.0270
Boston 14 [8] 2.19 2.19 2.19
Orange juice [9] 4.78 4.68 4.79
Water purification [10] 0.976 0.958 0.976

For a large value of ε, there may be cases where a proper working set is not
obtained and thus the solution does not converge. This is because the monotonic
decrease of the objective function values is not guaranteed.

4 Performance Comparison

We compared the average estimation error and training time of the proposed
method with those of other methods using the data sets listed in Table 1. For
the data sets that are not divided into training and test data sets, i.e., abalone,
Boston 5, and Boston 14, we randomly divided the set into two with almost
equal sizes.

In our initial study we found that active set training for the L2 SVR failed to
converge more frequently than for the L2 SVM [5] especially for a large value of
ε. Therefore, to avoid non-convergence we set a value of h larger than that for
the L2 SVM, i.e., h = 500. Therefore, except for the abalone problem, initially
all the training data were used for training.

We used the RBF kernel with the γ value selected from {0.1, 0.5, 1, 5, 10, 15,
20}. The value of the margin parameter was selected from {1, 10, 50, 100, 500,
1, 000, 2, 000, 3, 000, 5, 000, 7, 000, 10, 000, 100, 000} and the ε value for L1 and L2
SVRs from {0.001, 0.01, 0.05, 0.1, 0.5, 1} and determined the parameter values by
fivefold cross-validation. For the parameter values of the LS SVR and L1 SVR,
we used the grid search. But for the L2 SVR, for a large value of ε, active
set training sometimes failed to converge. Therefore, we first carried out cross-
validation with ε = 0.001 and selected the γ value. Then fixing the γ value we
carried out cross-validation changing C and ε values. The parameter values for
the LS SVR and L2 SVR were very similar. Especially, the γ values were the
same because we started cross-validation of the L2 SVR with ε = 0.001, which
was very close to the LS SVR.

Table 1 shows the average approximation errors. The smallest approximation
errors are shown in boldface. The approximation errors for the three SVRs are
almost identical.

Table 2 lists the training time in seconds, measured by a personal computer
(3GHz, 2GB memory, Windows XP operating system). In the table “L1 PDIP”
denotes that the L1 SVR was trained by the primal-dual interior-point method
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Table 2: Training time comparison (s).

Data L1 PDIP L2 NM Active

Abalone 446 198 58
Boston 5 1.0 4.5 0.09
Boston 14 1.6 1.4 0.09
Orange Juice 0.83 36 0.16
Water purification 0.80 0.23 0.13

and “L2 NM” denotes that the L2 SVR was trained by Newton’s method with
fixed-size chunking. For all the cases, active set training for the L2 SVR was the
fastest.

5 Conclusions

In this paper we proposed a new training method for L2 SVRs. Namely, starting
with an initial working set, we solve the subproblem expressed in the dual form by
Newton’s method, delete the data in the working set that are within the epsilon
tube, add the data that are outside of the epsilon tube, and repeat solving the
subproblem until the same working set is obtained. By computer experiments
we show that the proposed method was faster than that of Newton’s method
with fixed-size chunking but for large epsilon value, there were cases where the
training did not converge. We leave this problem in the future study.
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