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Abstract. A twofold spike-timing dependent stochastic synaptic model
is used along with a leaky Integrate-and-Fire neuronal model to predict
the spike timing of a single post-synaptic neuron in the lateral geniculate
nucleus, knowing the spike train on the pre-synaptic side (i.e. in a retinal
ganglion cell). In this synaptic model, spike-timing dependency is intro-
duced for both the magnitude and relaxation of the dynamics representing
the synaptic action. The results show that the used model is able to reli-
ably predict the exact timing of spikes. These results and the model are
the winner of a recent international competition.

1 Introduction

The computational model by Hodgkin-Huxley [1] is considered to be the most
influential work in computational neuroscience. This mathematical description
of action potential generation and the involved dynamics of ion channels has
led to a series of simplified neuronal and a number of synaptic models. These
models try in a simplified quantitative way to describe the underlying dynam-
ics of both neuronal and synaptic activities within the neural systems, see e.g.
[2, 3]. However, the precise description of neural activity involves a larger num-
ber of synergetic and cooperative variables, that may prevent the understanding
of the whole underlying dynamics [4]. Moreover, it is not clear if these simplified
models are sufficient to realize the essence of combined neuronal and synaptic
dynamics. The work in the field of predicting the exact spike-timing of certain
neuronal activities comprises either the development of new models [5] or design-
ing algorithms for automatic parameter fitting [6]. It was shown that some of the
neuronal models are able to yield good and reliable predictions when compared
to biological data, see [6] for a short review.

In a recent study, we have reported that adopting certain features into the
representation, even with a relatively simple neuronal model, allows to realize
a more reliable simulation of the activities observed in the biological neural
systems [7]. These features are specifically meant to be the stochastic nature
of synaptic release and the explicit representation of synaptic resources. The
synaptic resources are the calcium ions and the Neurotransmitter (Nt).

Thus, we present both our model and results in predicting the exact spike-
timing from a single post-synaptic neuron in the lateral geniculate nucleus (LGN)
knowing the spike train on the pre-synaptic side (i.e. in a retinal ganglion cell
(RGC)). Both the model and results were the winning submission of a recent
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international challenging competition [8, 9] for predicting spiking times from bi-
ological neurons 1. This competition was based on the work of M. Carandini
et al. in [10]. The experimental setup and acquisition of neuronal activity were
extensively described in [10] for all details. In short, extracellular recordings
were performed in-vivo in rhesus monkeys. Retinal postsynaptic potentials from
RGC and LGN action potentials were extracted by off-line waveform templat-
ing. Visual stimuli as the light intensity of a LED illuminating only the field
center varied continuously, with a temporal frequency power spectrum between
0.2 and 80 Hz. The visual stimulus was 10 s long and was repeated 76 times,
see upper panel in Fig. 1. In [10] they tried to predict the spike-timing of the
postsynaptic neuron. They used an Integrate-and-Fire (IAF) neuronal model
along with a simple synaptic parameterization of the excitatory postsynaptic
potential. Their predictions were considered the benchmark for the this exper-
iment. The approach that is reported here is based on the modified stochastic

Fig. 1: Schematic of experimental setup (Upper panel) and simulation setup
(Lower panel)

synaptic model (MSSM) that we introduced in [7]. The results show that using
the introduced framework, the spike times can be reliably predicted. Moreover,
a new benchmark was defined as well.

2 The Model

The post synaptic neuron is modeled as leaky-IAF neuron [2]. It is described by
its voltage membrane potential u:

τu
du

dt
= −u + Epsp − Eref , (1)

where τu is the membrane time constant, and Epsp is the total observed exci-
tatory postsynaptic potential from all pre-synaptic terminals. When u(t) ≥ uth

(uth = −60mV), a spike is generated and u(t+) := urest where urest = − 70mV.
τu is the membrane time constant set at 20 mV. Eref replaces a fixed absolute
refractory period; it represents the reversal potential for spike rate adaptation

1http://www.incf.org/community/competitions/spike-time-prediction/2009/challenge-d
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(SRA) and a refractory current. Hence, Eref = rm ∗ (gsra + gref ) ∗ (u − Ek);
where Ek is set to -65 mV; gsra and gref are the SRA and refractory conduc-
tances respectively: ˙gsra = −gsra/τsra and ˙gref = −gref/τref ; τsra and τref

are set to 200 msec and 2 msec respectively. rm is the neuronal resistance set
arbitrarily at 90 MΩ.

The synapse is modeled as a novel twofold stochastic activity-dependent
synaptic model using our modified synaptic stochastic model (MSSM) [7]. In
general, the synapse is modeled to be stochastically activity-dependent. This
model estimates the transmission probability of an arriving spike from a presy-
naptic neuron via a synapse to a postsynaptic neuron. The probability-of-release
involved is governed by two counteracting mechanisms: facilitation and depres-
sion. Facilitation reflects the Ca2+ concentration in the presynaptic neuron,
while depression represents the effect of the concentration of ready-to-release
vesicles in the pre-synaptic neuron. The probability that a spike in the spike
train triggers the release of a vesicle at a time instant n at a given synapse is
given by P (n) = 1 − e(−C(n) V (n)), where C(n) and V (n) represent the facilita-
tion and depression mechanisms respectively [7, 11]; as discrete time difference
equations, they read:

C(n) = α θ(n − 1) + kC (C(n − 1) − Co) + Co, (2)
V (n) = −P (n − 1) θ(n − 1) + kV (V (n − 1) − Vo) + Vo, (3)

In eq. 2, kC corresponds to the decay time constant, τC , of the response
to a single incoming spike. α represents the magnitude of the response while
Co represents the initial concentration of Ca2+ in the pre-synaptic terminal. In
eq. 3, V (n) is the expected number of vesicles of neurotransmitter (Nt) molecules
in the ready-for-release pool at time instant n. Vo is the max. number of
vesicles that can be stored in the pool. kV corresponds to the time constant,
τV , for refilling the vesicles. θ(n) represents the instantaneous input firing rate
observed at the synapse at time instant n; it equals then Δ−1

isi , where Δisi is
the last observed inter-spike-interval (ISI). As the binding process of Nt in the
postsynaptic membrane induces Epsp, the equation governing its generation is
given by [7, 12]:

τepsp
dEpsp

dt
= −Epsp + kepsp Nt, (4)

where τepsp is a decay time-constant and kepsp is a scaling factor. Nt is the
concentration of the released Nt in the synaptic cleft [7]. This concentration
can be estimated by tracing the amount of vesicles2 of Nt that remains in the
presynaptic neuron, V (n), over time. Thus, Nt(n) is:

Nt(n) = max(0, V (n) − V (n − 1)) + Nt(n − 1)e−Δisi/τN (5)

In eq. 5, Nt(n) is the summation of: a) the estimated amount of Nt added with
each release at any time step n (or the decrease in V (n) over the last time step);

2Each quantum of Nt is stored in one synaptic vesicle. Thus, the concentration of Nt in
the synaptic cleft is meant to be its corresponding concentration of quanta of Nt [3].
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where the max(. . .) avoids negatives plus b) the amount of Nt that remains in the
cleft from previous releases. The decay with τN reflects the biological cleaning
action, or the removal of the Nt from the cleft. Equations 2, 3 and 5 implement
the spike-timing dependence as being function of Δisi. This affects the speed
of either the decay or build of any of the above quantities in accordance to the
instantaneous timing of invading spikes [7]. The second fold of this dependence
which we propose here is implemented for the response constants themselves,
e.g. α and Co. Thus, the magnitudes of the response itself are tuned according
to Δisi. Hence, let

Vo = V �
o e−Δisi/τV (6)

Co = C�
oe−Δisi/τC (7)

α = α�e−Δisi/τC (8)
kepsp = k�

epspe
−Δisi/τepsp (9)

The parameters V �
o , C�

o , α� and k�
epsp are the starting values of the corre-

sponding variables. The starting values for all the simulation parameters are
adopted from [13].

3 Training and Benchmark Test

The data set in general comprises 76 pair of files, as a pair per repetition. For
each pair, one file contains the input spike times while the second holds output
spike times. The odd repetitions out of the 76 ones are used as the training set,
while the even ones are the test set. Training is implemented by applying the
Hebbian rules to the starting values of the response constants only. Thus, all the
timing decay constants are set to biologically plausible values similar to those
reported in [13]. The training process involves 200 training runs. In each run,
a repetition is randomly selected from the training set and its input is fed to
the model; the parameters are tuned accordingly using its Carandini output as
the reference signal (briefly explained in next paragraph). Each repetition is not
allowed to appear more than 6 times across the whole training process to ensure
the introduction of the available 38 repetitions. The training algorithm can be
summarized as follows: each constant, mi, can contribute to either excitatory
or inhibitory regimes in the synaptic action; and according to the pre- and
postsynaptic activity, its value is either increased or decreased following the
Hebbian approach [12]. The value of the excitatory variable is increased while
it is decreased for the inhibitory one when a spike at the pre-synaptic neuron
induce a correct timed spike at the post-synaptic neuron, and vice versa. The
update of the parameter values, then, can be read as mnew

i = (1±rl)mcurrent
i [7],

where rl is the learning rate. mi is each constant of the tunable parameters: V �
o ,

C�
o , α� and k�

epsp. By training, they are set to 3.7, 0.05, 0.09 and 6 respectively.
The benchmark test was originally introduced in [4]. This test evaluates

quantitatively the predictions between two spike trains as a coincidence factor
Γ. To evaluate this quantity, the number of coincidences Ncoinc is calculated
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between the spikes in the Carandini spike train from one repetition (as target)
and the spike train from simulation. This number is calculated by counting the
number of target spikes for which we can find at least one simulated spike within
± 4 ms. Then, the expected number of coincidences 〈Ncoinc〉 that a Poisson spike
train with the same average frequency would give is calculated. The factor Γ,
thus, reads [4]:

Γ =
Ncoinc − 〈Ncoinc〉

0.5(NCrnd + NMdl)
1
ν

(10)

where NCrnd and NMdl denote the number of spikes from the Carandini data set
and simulated (the model) spike trains respectively; ν is a factor that normalizes
the coincidence factor Γ to a maximum of 1. Γ = 0 implies that the prediction
is not better than chance level. Γ = 1 implies that the prediction by the model
is optimal, for more details please review [4, 6]. The predictions from Carandini
et al. [10] yield a coincidence factor of Γ = 79.1% ± 0.6 for the test set.

4 Results and Discussion
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Fig. 2: a) Mean Γ of the model per repetition; Dashed line: the mean value
across repetitions. b) Sample from the 9th repetition. Upper Panel: The target
output from the LGN neuron from [10]. Lower Panel: Spikes from the model.

The experimentally recorded spike times from RGC neurons are the input
data while those from the LGN neurons are the output target ones, see lower
panel in Fig. 1. The Carandini input train of spikes from each repetition is pro-
cessed through the synaptic model and the neuronal model as described above.
The simulated output spikes are then compared to the recorded data set for
each repetition, and the spike-timing coincidence factor Γ is calculated conse-
quently. Figure 2.a illustrates the value of this factor for all the 38 training odd
repetition. The mean Γ factor across them is 92.2% ± 1.3. The output data set
for the even repetitions (test set) is not yet available from the organizers of the
competition but are used to calculate the challenge performance and thus were
unknown to the competitors. The results of the challenge has been announced
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that the mean Γ factor is 90.6%±0.3. Figure 2.b shows sample of simulated and
target Carandini spikes. The results illustrate a high precision in predicting the
spike-timing within a time window of 2 msec.

Hence, the framework presented here is able to reliably capture the trans-
formation between the incoming and outgoing spike trains for a single defined
neuron-synapse-neuron circuitry in the visual system. These results with the
above mentioned coincidence factor (90.6%) has been considered the new bench-
mark for this predictions. This study ensures the role of adopting a wealthy
synaptic dynamics in order to capture more realistic features from the biological
nervous system. It remains to be seen if a simplified synaptic parameterization,
e.g. the synaptic model from Markram et al. reviewed in [3], can accomplish
a comparable performance. Considering the neural prosthesis and rehabilita-
tion options, the hardware implementation of such model represents a highly
challenging but yet a promising task as well.
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