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Abstract. Diagnosis in neuro-oncology can be assisted by non-invasive
data acquisition techniques such as Magnetic Resonance Spectroscopy
(MRS). From the viewpoint of computer-based brain tumour classification,
the high dimensionality of MRS poses a difficulty, and the use of dimension-
ality reduction (DR) techniques is advisable. Despite some important limi-
tations, Principal Component Analysis (PCA) is commonly used for DR in
MRS data analysis. Here, we define a novel DR technique, namely Spectral
Prototype Extraction, based on a manifold-constrained Hidden Markov
Model (HMM). Its formulation within a variational Bayesian framework
imbues it with regularization properties that minimize the negative effect
of the presence of noise in the data. Its use for MRS pre-processing is
illustrated in a difficult brain tumour classification problem.

1 Introduction

Brain tumour diagnosis is a sensitive and complex task. Due to the anatomical
constraints of these pathologies, experts’ decision making is strongly supported
by information acquired through non-invasive measurement methods. Some of
the most commonly used techniques for this task are image-based, such as Mag-
netic Resonance Imaging (MRI). Other Magnetic Resonance (MR) techniques,
such as single-voxel proton MRS (SV-1H-MRS), provide metabolic information
about the tissues investigated. However, one of the main difficulties for the anal-
ysis of MRS data is their high dimensionality, given that spectral frequencies are
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taken to be data variables. This is further complicated by the usually small
number of cases available in medical MRS databases of brain tumours.

Feature Selection (FS) and Feature Extraction (FE) for DR are often per-
formed in MRS datasets prior to diagnostic classification [1, 2]. PCA is, by far,
the FE technique most commonly used in MRS data analysis. Unfortunately,
PCA has some important limitations in this scenario: First, the DR results are
bound to be affected by the presence of uniformative noise in the data, which is
commonplace in MRS. Secondly, the resulting components must be selected ac-
cording to some ad hoc thresholding on the basis of variance retention. Thirdly,
each component is a linear combination of all the spectral frequencies; this se-
riously limits the interpretability of the results, which is paramount in brain
tumour diagnosis. Finally, PCA (and, by that matter, other FE techniques used
for the same purpose, such as Independent Component Analysis: ICA) com-
pletely bypasses the fact that MRS data do not comply with the independent
and identically-distributed (i.i.d.) condition.

In this brief paper, we define a novel FE technique, namely Spectral Pro-
totype Extraction (SPE), that overcomes all of the aforementioned limitations
of PCA and similar techniques. It is based on a manifold-constrained HMM,
suitable for non-i.i.d. data, and its formulation within a variational Bayesian
framework imbues it with regularization properties that minimize the negative
effect of the presence of noise in the data. This model, Variational Bayesian
Generative Topographic Mapping Through Time (VB-GTM-TT: [3]) segments
the MRS in an interpretable way. Its use for FE in MRS is illustrated in a
difficult brain tumour classification problem: that of discriminating between
glioblastomas and metastases, two types of agressive brain tumours.

2 Spectral Prototype Extraction using VB-GTM-TT

Manifold learning techniques are meant to model usually complex and high-
dimensional multivariate data through simpler low-dimensional, manifold-based
representations. When defined within the Statistical Machine Learning frame-
work, they can be made to rely in sound principles, while embodying attractive
properties such as adaptive parameter optimization and modularity.

Generative Topographic Mapping Through Time, or GTM-TT [4], is one such
technique, defined as a constrained HMM and capable of providing simultaneous
clustering and visualization of multivariate non-i.i.d. data such as time series
and spectra. This model was recently assessed in some detail in [5].

2.1 Variational Bayesian GTM-TT

The presence of uninformative noise in a dataset and the associated potential
problem of data overfitting can seriously hamper the modeling of non-i.i.d. data.
In its basic formulation, GTM-TT is prone to overfitting unless active regular-
ization methods are applied. The reformulation of this model within a Varia-
tional Bayesian framework confers it with regularization capabilities in a natural
way, avoiding unnecessary approximations. The resulting Variational Bayesian
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GTM-TT (VB-GTM-TT) has been shown to deal effectively with the problem
of overfitting caused by model learning in the presence of noise [3].

Avoiding a direct Maximum Likelihood approach -that might require the use
of approximations in algorithms such as Expectation-Maximization (EM) for
adaptive parameter estimation- variational inference allows the definition of a
lower bound for the marginal log-likelihood of the model, defined as

ln p (X) = ln

∫ ∑
all Z

p (Z,X|Θ) p (Θ) dΘ (1)

whereX are the MRS data; Z are the hidden states defined by the model; and
Θ are the model parameters, including a matrix with the centroids or prototypes
embedded in the model manifold Y, initial state probabilities π, and transition
probabilities A. These parameters depend, in turn, on a set of hyperparameters
ν, λ, ε, α, dβ , sβ . The complete model is graphically illustrated by Fig. 1.
Details on the calculations involved are beyond the scope of this paper and can
be found elsewhere [3].

Fig. 1: Graphical representation of the Bayesian GTM-TT model. Variables are noted by
circles, parameters, by squares, and hyperparameters, by rounded squares.

2.2 Spectral Prototype Extraction

The VB-GTM-TT provides a hidden space representation of the data by assign-
ing each point (in the case of MRS data, each spectral frequency) to the hidden
state bearing maximum responsibility for the generation of that point. Hid-
den states are arranged in a regular and topology-preserving 2-D grid for data
visualization. This mapping assignment (equivalent to a cluster-membership
assignment) is carried out according to a mode-projection that takes the form
hmode
n = argmax〈zk,n〉

k

, where the variational parameter 〈zk,n〉 is calculated as

part of the model estimation of its adaptive parameters and represents the prob-
ability for each hidden state of being the generator of each data point. Each
spectral frequency is therefore assigned to what we call here a spectral pro-
totype (SP). Importantly, previous research [3] has shown that VB-GTM-TT,
unlike unregularized counterparts, models data using a very limited number of

447

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



non-empty hidden states (SPs). This behaviour eliminates the need to select a
number of extracted features.

Another consequence of this assignment procedure is that each of the MRS
frequencies will be assigned solely to one SP. Moreover, given the HMM-based
nature of the model, each SP is likely to consist of complete intervals of frequen-
cies or collections of these intervals. All these should make the interpretation of
the SPE process easier than PCA and similar methods.

3 MRS of human brain tumours

The analyzed data were extracted from a multi-center, international database
[6] resulting from the INTERPRET European research project [7] and processed
according to [1].

The echo time (TE) is an influential parameter in MRS data acquisition. In
this study, we analyze data acquired at both short (SET) and long (LET) TE,
and their combination. The data sets analyzed consist of SV-1H-MRS spectra
acquired at 1.5T from brain tumour patients: 124 SET, including 86 glioblas-
tomas (gl) and 38 metastases (me); 109 LET, including 78 gl and 31 me; and 109
items built by combination (through concatenation)[8] of the spectra measured
at LET and SET for the same patients. 195 frequency intensity values measured
in parts per million (ppm) were used from each spectrum, in the [4.24-0.50]ppm
interval. These frequencies become the data features in all cases.

4 Experiments

The reported experiments aim, first, to assess the interpretably of the extracted
SP and, second, to compare PCA and SPE as FE techniques for the pre-
processing of the available MRS prior to classification. The application of SPE
was followed by a sequential forward (greedy stepwise) process of selection of
the most relevant SP. A subsequent classification step, using Linear Discriminant
Analysis (LDA), made use of these selections. These processes were implemented
in SpectraClassifier [9]. Classifier results were validated through bootstrap with
1,000 repetitions, and averaged accuracy (AA) and standard deviation (SD)
values as well as the Area Under the ROC Curve (AUC) were obtained.

4.1 Results and discussion

Due to space limitations, illustrative examples of the SPE results are shown, and
their interpretation in metabolic terms is discussed, for LET (Fig. 2) and SET
(Fig. 3), but not for LET+SET.

A sample of comparative classification results of the application of PCA and
SPE together with LDA is compiled in Table 1. Both models yield similar clas-
sification performances for LET, SET and for the combination of LET+SET.
Statistically significant differences (according to a t-Student test with p≤0.05
significance threshold) were found in favour of SPE with LET, and in favour
of PCA with SET. The combination of LET+SET did not produce statistically
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Fig. 2: Four of the 20 SP describing LET. In this figure, red is the mean spectrum of
glioblastomas and blue the mean spectrum of metastases. A) The SP consists of 3 frequen-
cies corresponding to Creatine (from 3.05 to 3.01ppm). B) The SP consists of 18 frequen-
cies corresponding to posible metabolite contributions that resonate in the 3.95 to 3.72ppm
range, namely Alanine/Glx/Phosphocreatine and Creatine; other frequencies found were
Taurine/Myo-inositol/Scyllo-inositol (3.30ppm), Phosphocreatine and Creatine/Glutathione
(2.97ppm), Mobile Lipids (2.07 and 1.97ppm). C) The 92 frequencies of this SP correspond
mainly to baseline noise and/or minoritary components. D) The SP consists of 20 frequencies
corresponding to Alanine (from 1.48 to 1.44ppm) and Mobile Lipids (from 1.09 to 0.79ppm).

Fig. 3: Four of the 22 SP describing SET. Again, the mean spectrum of glioblastomas and
metastases are displayed, in turn, in red and blue. A) The SP consists of 22 frequencies
corresponding to Glutathione and Mobile Lipids (ML), from 2.90 to 2.70ppm, and from 1.92
to 1.73ppm, respectively. B) The SP consists of 20 frequencies corresponding to total Choline
(from 3.24 to 3.16ppm), and ML/Glx/Macromolecules (from 2.24 to 1.97ppm). C) The SP
consists of 9 frequencies corresponding to ML centered at 0.9ppm (from 0.98 to 0.82ppm). D)
The SP contains 5 frequencies corresponding to ML (from 1.32 to 1.25ppm).
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significant differences. Furthermore, both approaches perform better with LET
than with SET. The combination of both echo times does not improve the perfor-
mance significantly for the discrimination challenge investigated. In conclusion,
SPE has been shown to be competitive as FE method previous to classification,
while improving on the interpretability of PCA. Future research should compare
the reported classification results obtained with LDA with those obtained with
alternative nonlinear classifiers.

PCA SPE

PC AA�SD AA�SD per class AUC SP AA�SD AA�SD per class AUC

LET 17 76.85�4.08 gl: 76.61�4.81 0.812 18 78.03�3.98 gl: 74.39�4.92 0.847

me: 77.52� 7.37 me: 87.18�5.99

SET 17 70.05�4.11 gl: 69.57�4.97 0.769 22 67.85�4.32 gl: 67.63�5.07 0.771

me: 71.17�7.59 me: 68.24�7.55

LET+ 20 77.05�3.98 gl: 73.05�4.92 0.846 19 77.10�4.13 gl: 71.88�5.26 0.828

SET me: 87.02�5.85 me: 90.18�5.27

Table 1: Classification results for PCA-based LDA and SPE-based LDA. The results chosen
for comparison are the best ones obtained for each method.
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