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Abstract. Clinical datasets typically contain continuous, ordinal, cate-
gorical and binary variables. To model this type of datasets, linear kernel
methods are generally used. However, the linear kernel has some disad-
vantages, which were tackled by the introduction of a clinical one. This
work shows that the use of a clinical kernel can improve the performance
of support vector machine survival models. In addition, the polynomial
kernel is adapted in the same way to obtain a clinical polynomial kernel. A
comparison is made with other non-linear additive kernels on six different
survival data. Our results indicate that the use of a clinical kernel is a
simple way to obtain non-linear models for survival analysis, without the
need to tune an extra parameter.

1 Introduction

Kernel based methods find more and more applications within medical decision
making, e.g. prediction of malignancy of tumors, classification of tumors, predic-
tion of viability of pregnancies, etc. In such medical problems, different types of
information are provided. Some variables will be continuous, e.g. patient’s age,
binary, e.g. smoking, ordinal, e.g. a performance score (low, moderate, high, ex-
cellent) and others will be nominal variables, e.g. cell type. However, the linear
kernel does not take the type of variable into account. The linear kernel is calcu-
lated as the inner product of the normalized variable values. Although this is an
easy way to calculate similarity and the interpretation of results is straightfor-
ward, some disadvantages remain. First, the similarity between whatever value
of a variable and a value of zero will always be zero, whether both values are
close or not. Second, for ordinal data, the similarity between values of two ad-
jacent classes depends on the total number of levels of the variable. Third, for
nominal variables, dummy variables need to be calculated, in order to be able
to treat them as non-related.

To tackle the problems described above, a clinical kernel was proposed in [1]
for classification problems. The clinical kernel is an additive kernel, as the linear
one, but instead of calculating cross-products, it calculates the relative difference
of differences in function values for continuous and ordinal data. For nominal
data, the value of the kernel is set to 1 for values that are exactly the same, and
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0 otherwise. In this way it is no longer necessary to make k−1 dummy variables
for k−level nominal variables.

In this paper, the clinical kernel is applied to support vector machine survival
models [2, 3, 4]. In addition, the proposed adaption of the linear kernel to obtain
the clinical one, is adapted to the polynomial kernel. We investigate whether
both kernels can improve the performance of kernel based survival models. The
rest of the paper is organized as follows. Section 2 starts by describing the kernel
based model for survival analysis. In Section 3 the clinical kernel is compared
with the linear kernel and the polynomial kernel is adapted towards a clinical
polynomial kernel. Section 4 illustrates the use of different kernels on 6 clinical
survival datasets. Finally, Section 5 gives some conclusions.

2 Support vector machines in survival analysis

Building survival models with kernel based methods is based on the empirical
maximization of the concordance index (c-index) [5]. The c-index measures the
percentage of comparable pairs which is concordant. A pair of observations is
considered to be concordant whenever (i) the pair is comparable and (ii) the
difference in observed failure time and the difference in model outcome have the
same sign. A comparable pair is a pair for which the time order is known. Non
comparable pairs are: (i) one observation with an event after x years and the
other observation with a right censored event time at y years with y < x; (ii)
two right censored observations.

In addition to the empirical optimization of the c-index, the model outcome is
targeted at the true event time for events, and at a value larger than the censoring
time for right censored observations. Let u(x) = wT ϕ(x). Let Y be the vector
containing the sorted failure times and Φ = [ϕ(x1) . . . ϕ(xn)]T ∈ R

n×nϕ , with
feature map ϕ, the matrix containing the corresponding features. The model
formulation then becomes (see [4] for more details)

min
w,ǫ,ξ,ξ∗

1

2
wT w + γ1T ǫ + µ1T (ξ + ξ∗) s.t.
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(1)

where R = diag(δ), with δ a censoring indicator vector (δ = 1 for events, 0
otherwise). The matrix D ensures the comparison between pairs:
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The data are sorted from the beginning such that DY ≥ 0. Therefore the c-
index would be optimized by DΦw ≥ 0. Targeting DΦw at DY instead of at a
positive value, indicates that the difference in failure should be considered [2].
After formulating the Lagrangian of (1) and taking the KKT conditions, the
solution if obtained from

min
α,β,β∗

1
2

[

αT βT β∗T
]
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0 ≤ α ≤ γ

0 ≤ β ≤ µ

0 ≤ β∗ ≤ µ .

(3)
The outcome u(x∗) for a new observation x∗ can then be found as u(x∗) =
(DT α + β − Rβ∗)T Kn, with Kn = [ϕ(x1)

T ϕ(x∗) . . . ϕ(xn)T ϕ(x∗)]T .

3 Kernel functions

In kernel based methods one does not have to specify ϕ(·) explicitly, but the
mapping φ(·) of a covariate is induced implicitly by defining the innerprod-
uct K(xi, xj) = ϕ(xi)

T ϕ(xj). This in turn requires that the user specifies a
suitable kernel function, rather than a (high-dimensional) representation ϕ(x)
of x. Generally one chooses one of the following kernels: (i) a linear kernel
K(x, x∗) = xT x∗; (ii) a polynomial kernel of degree a K(x, x∗) = (τ + xT x∗)a,
where τ ≥ 0 or (iii) an RBF kernel K(x, x∗) = exp(−||x− x∗||22/σ2), with τ and
σ tuning parameters.

An alternative to the linear kernel was proposed in [1]. This clinical kernel is

an additive kernel Kclin(xi, xj) =
∑d

p=1 K
(p)
clin(x

(p)
i , x

(p)
j ), where the componen-

twise kernel K(p) is calculated differently for different types of covariates. For
continuous and ordinal variables, the kernel is defined as [1]

K
(p)
clin,1(x

(p)
i , x

(p)
j ) =

(max(p) −min(p)) − |x
(p)
i − x

(p)
j |

max(p) −min(p)
, (4)

where min(p) and max(p) are the minimal and maximal value of the covariate p,
evaluated on training data. For nominal variables, the kernel is defined as

K
(p)
clin,2(x

(p)
i , x

(p)
j ) =

{

1 if x
(p)
i = x

(p)
j

0 if x
(p)
i 6= x

(p)
j .

(5)

Since the polynomial kernel has the same disadvantages as the linear one, we
adapted the polynomial kernel in the same way as the linear kernel: Kpoly−clin =
(τ +Kclin)d and call it the clinical polynomial kernel. Due to Mercer’s condition,
the kernel needs to be positive definite for the kernel trick to be applicable in
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(1) and (3). One can prove that the clinical and polynomial clinical kernel are
both positive definite kernel using kernel properties (see [6]).

4 Results

This Section describes the comparison of six clinical survival datasets: one
dataset concerning leukemia [7], two lung cancer datasets [8, 9], one breast can-
cer dataset [10], one about prostatic cancer [11] and a sixth dataset on kidney
transplants [12]. More information on the datasets can be found in Table 1 and
in the references. All datasets were 100 times randomly divided into training
and test sets. Half of the training data were used as a validation set in the tun-
ing phase. Coupled simulated annealing [13] was used to tune the regularization
and/or kernel parameters.

Table 1: Description of the six clinical survival datasets.
dataset # test # training # nominal # cont/ordinal

leukemia (LE) 43 86 3 5
lung cancer (1) (LC1) 46 91 4 3
lung cancer (2) (LC2) 56 111 1 6
prostatic cancer (PC) 161 322 3 5
breast cancer (BC) 229 457 2 6

kidney transplant (KT) 288 575 2 1

In Figure 1 the differences in estimated functional forms for the variables age
and Karnofsky score (indicating how a cancer patient is functioning on a scale
from 0 to 100 percent) on one particular test set of the LC1 dataset are shown
for the linear and clinical kernel. This Figure clearly illustrates the non-linear
behavior of the clinical kernel. Therefore, the clinical kernel is compared with
the linear one, and with other non-linear kernels.
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Figure 1: Estimated effects of 2 covariates for one particular training test set
split of the LC1 dataset for the linear (solid line) and clinical kernel (dashed
line).

Tables 2 and 3 summarize the performance on the test sets of all six datasets
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and 5 additive kernels. Only polynomial kernels of the second degree were con-
sidered. The logrank χ2 statistic expresses the ability of the generated prognostic
index to separate two groups. The median value of the prognostic index is taken
as the threshold between the two groups. Comparing the linear and clinical
kernel, clearly favors the latter. Comparing both polynomial kernels does not
reveal a large improvement. Comparing the clinical kernel with the polynomial
and RBF kernels, shows that the clinical kernel is able to obtain a performance
which is comparable to that of other non-linear kernels. However, the clinical
kernel has the advantage that it has no kernel tuning parameter.

Table 2: Median concordance index on 100 randomizations between training,
validation and test set. The best performing model is indicated in bold. Statis-
tical significant differences between the clinical and all other kernels were tested
with the Wilcoxon rank sum test and indicated as: ∗,o if p < 0.05, ∗∗,oo if
p < 0.01 and ∗∗∗,ooo if p < 0.001. Differences in favor of the clinical kernel are
indicated with *, differences in favor of the other kernels are indicated with o.

data lin clin poly poly-clin RBF

LE 0.65±0.05∗∗∗ 0.70±0.06 0.69±0.06 0.70±0.04 0.71±0.05

LC1 0.69±0.05 0.70±0.05 0.70±0.04 0.70±0.04 0.68±0.05∗∗∗

LC2 0.62±0.05
o 0.61±0.05 0.57±0.05∗∗∗ 0.60±0.05 0.61±0.05

PC 0.73±0.05∗∗∗ 0.78±0.03 0.76±0.03∗∗ 0.78±0.03 0.76±0.03∗∗

BC 0.62±0.03∗∗∗ 0.68±0.02 0.68±0.02
o

0.68±0.02 0.67±0.02
KT 0.55±0.12∗∗∗ 0.64±0.04 0.65±0.07 0.64±0.04 0.66±0.03

o

Table 3: Median logrank χ2 on 100 randomizations between training, validation
and test set. The best performing model is indicated in bold. Statistical signif-
icant differences between the clinical and all other kernels were tested with the
Wilcoxon rank sum test and indicated as: ∗,o if p < 0.05, ∗∗,oo if p < 0.01 and
∗∗∗,ooo if p < 0.001. Differences in favor of the clinical kernel are indicated with
*, differences in favor of the other kernels are indicated with o.
data lin clin poly poly-clin RBF

LE 2.07±4.03∗∗∗ 8.17±6.69 4.25±3.95∗∗∗ 5.88±3.78∗∗∗ 6.50±4.67
LC1 3.78±5.88∗∗∗ 7.95±6.42 7.19±5.99 8.06±6.67 4.64±5.37∗∗∗

LC2 2.87±3.30
oo 1.93±2.22 1.04±2.47 1.78±2.44 2.01±2.91

PC 5.06±5.08∗∗∗ 12.88±6.02 10.54±5.63∗ 13.27±5.79 10.36±5.87∗

BC 7.16±5.88∗∗∗ 17.71±8.90 25.50±8.96
ooo 20.14±8.02oo 19.14±7.35

KT 3.92±6.09∗∗∗ 10.79±5.52 11.29±5.30 9.32±5.56 11.84±5.13o

5 Conclusions

This work compared the performance within a kernel based survival model of the
linear versus the clinical kernel. On the 6 datasets used here, the performance
was improved by using the clinical kernel. However, in contradiction to the
linear kernel, the clinical kernel is a non-linear kernel and clinical interpretation
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becomes more difficult. The polynomial kernel was adapted in the same way as
the linear one, to obtain a clinical polynomial kernel. After comparison of linear,
clinical, polynomial and RBF kernels, we conclude that the clinical kernel is an
easy and handy kernel which can be used to obtain non-linear models in survival
analysis without the need to tune a kernel parameter.
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