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Abstract. The present research deals with the review of the analysis and modeling 

of Swiss franc interest rate curves (IRC) by using unsupervised (SOM, Gaussian 

Mixtures) and supervised machine (MLP) learning algorithms. IRC are considered 

as objects embedded into different feature spaces: maturities; maturity-date, 

parameters of Nelson-Siegel model (NSM). Analysis of NSM parameters and their 

temporal and clustering structures helps to understand the relevance of model and 

its potential use for the forecasting. Mapping of IRC in a maturity-date feature 

space is presented and analyzed for the visualization and forecasting purposes.  

1 Introduction 

Interest rate curves (IRC) are fundamental objects in economics and finance. They are 

widely used in financial engineering and risk management. Therefore the analysis, 

modeling and forecasting of IRC are very important. By definition, the IRC is the 

relation between the interest rate (cost of borrowing) and the time to maturity of the 

debt for a given borrower in a given currency. The main objectives of the present 

paper are the following: 1) analysis of IRC variance-covariance matrix evolution the 

coherency in the behavior of interest rates of different maturities using moving 

window approach in order to avoid problems with non-stationarity; 2) comprehensive 

analysis and patterns detection in a parametric feature space composed of the 

parameters of NSM widely used for the prediction of IRC; and 3) to revise recently 

proposed by the authors forecasting and reconstruction of missing IRC by applying 

spatial statistics and machine learning. Traditionally IRC are considered either as 

fixed in time curves modeled using no-arbitrage principle, or by applying equilibrium 

models by modeling the dynamics of the intravenous rate using affine models. Real 

case study is based on the recent evolution of Swiss franc (CHF) IRC.  

 Typical CHF IR curves for some fixed days are presented in Figure 1 (top) and 

daily evolution (from 1998 to 2006) of interest rates for different maturities is shown 

in Figure 1 (bottom). This period of the study is quite interesting because it represents 

different market conditions. The IRC considered are composed of LIBOR interest 

rates (maturities from 1 week up to 1 year) and of swap interest rates (maturities from 

one year to 10 years). In this research we use the following maturities: 1 week, 1, 2, 3, 

6 and 9 months; 1, 2, 3, 4, 5, 7 and 10 years.  
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 Interest rates depend on time and on maturity which defines their term structure. 

In general, IRC follow some well known stylized facts [1]: the average yield curve is 

increasing and concave; the yield curve assumes a variety of shapes through time, 

including upward sloping, downward sloping, humped, and inverted humped; IR 

dynamics is persistent, and spread dynamics is much less persistent; the short end of 

curve is more volatile than the long end; long rates are more persistent than short. In a 

more general setting IRC can be considered as functional data.  

 In Figure 2 temporal evolution of cross-correlations between different maturities 

(correlation matrix) is presented as a time series. Window of 50 business days was 

used for the computations. The observed patterns of correlations change from very 

high positive (cooperative) behavior to quite dispersed patterns: correlations can be 

found between [-0.8; +1].  

 Some analysis of IRC by using self-organizing Kohonen maps (SOM) was 

presented in [2]. Curves were considered in a 13 dimensional feature space composed 

from 13 maturities. Temporal clustering corresponding to different market conditions 

(e.g., bullish, bearish, transitional) was observed.  

 
Fig. 1: Examples of interest rate curves (top) and time series for some maturities 

(bottom).  

2 Modeling  

As it was mentioned above, modeling of IRC is of great importance for financial 

industry. In [3] the Nelson-Siegel model for modeling IR curve was proposed. In [1] 

this model was extended to a 3 factors dynamic model. These factors correspond to 
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long-term, short-term and medium-term IR behaviour: Level = (maturity 10 years), 

Slope = [(maturity  10  years) – (maturity  3  months)], Curvature  = 

[2*(maturity 2 years) – (maturity 3 moths) – (maturity 10 years)]. In [1] these 

parameters were modelled as a linear auto-regressive time series using historical data 

and have demonstrated efficiency of this methodology. Weekly IR data were 

considered.  

 The study of the evolution of local cross-correlations between NSM factors and 

their clustering are important for understanding of their contribution to the final 

characterization of the curves. As it can be seen in Figure 3, there are some windows 

when all factors are highly and positively correlated. It means that all of them move 

coherently which can correspond to 1) market behaviour; 2) temporal clustering [2,4].  

 

 
Fig. 2: Cross-correlations between maturities (up) estimated in a window of 50 days 

and time series of maturities (2000-2006) (bottom). 

 

In this paper clustering in the space of NSM parameters is studied using Gaussian 

Mixture Model. Usually Mixture Models are used for the density estimation of the 

data. Density estimation is the construction of an estimate, based on observed data, of 

an unobservable underlying probability density function (p.d.f.). Mixture Model 

estimates density distribution in a form of a linear combination of some simple 

functions (called components, units, or kernels): 
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Such representation of a p.d.f. is called a mixture distribution [5]. P(j) are mixing 

coefficients. In a Bayesian framework, P(j) can be considered as prior probabilities of 

any data point having been generated from component j of the mixture. 

 In Figure 4 phase trajectories in two-dimensional spaces (level-slope; slope-

curvature; level-curvature) are presented as well as the result of SOM based analysis 

(four clusters are shown). According to these figures it is evident that there is also 

temporal clustering. GMM was applied to study clustering and the results are given 

in Figure 5. These patterns of clustering can be used to develop nonlinear models of 
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the evolution of parameters and then to forecast interest rate curves as it was done 

with AR model in [1]. In this paper we apply another approach.  

 

 
Fig. 3: Time series of Nelson-Siegel 3 factors model parameters (bottom) and their 

cross-correlations estimated in a window of 50 days (up).  

 
Fig. 4: Temporal evolution and clustering by SOM (4 clusters represented by dots) of 

NS model parameters (a), (b)-(d) – 2D graphs of temporal evaluations of factors 

(presented by colour scale).  

a)  b)  

c)  d)  
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3 Mapping and predictions of interest rates 

Mapping of interest rates can be used for different purposes [6,7]: 1) visualisation of 

interest rate curves as a two-dimensional image; 2) completion/interpolation of the 

part of image in order to fill missing data/curves; and 3) forecasting/extrapolation of 

IRC. In our case mapping is an embedding of all interest rate curves into a two-

dimensional feature-space composed of maturity and date. In this space we have 

dispersed measurements at some points in time and for some maturities, according to 

raw data. The space can be filled/completed by using either traditional interpolation 

geostatistical tools, or by applying machine learning algorithms [6,7]. After the 

interpolation a two dimensional representation of IRC estimated at any maturity and 

for all dates is given. If we apply also an extrapolation technique, the forecasting of 

IRC can be performed.  

 An example of interest rates mapping by using simple linear interpolation and 

multilayer perceptron is given in Figure 6 (bottom). Two dimensional images after 

mapping are easier and better for understanding and interpretation of data. Linear 

interpolation reflects also some temporal information “flows” between different 

maturities. Mapping of IRC can be a basis for the development of visual analytics 

and exploratory tools.  

 
Fig. 5: 2D presentation of NSM 3 factors and 4 clusters found by GMM. 

 

 In the present research two interesting results following from IRC mapping are 

given. In Figure 6 (up-left) a reconstruction (missing curves) of two typical curves is 

presented. This can be considered as in-sample forecasting. Of course, more 

interesting is an out-of-sample forecasting of IR curves. Forecasting of the curve in a 

three business weeks is shown in Figure 6 (up-right).  

4 Conclusions 

In computational finance machine learning has a great potential and should be widely 

used from the comprehensive exploratory data analysis to the 

presentation/visualization of modeling results. In the present paper some topics were 
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considered with promising results: analysis of local cross-correlations along with 

clustering in model’s parameter space and mapping of interest rate for the 

visualization, missing data recovering and forecasting purposes. Future research will 

elaborate joint methodology by combining both approaches. An important topic deals 

with the connection of these results with the financial instruments and risk 

management.  

 

   
Fig. 6: 2D mapping (interest rates vs. X=maturities, Y=date) modeled by linear 

interpolation (bottom-left) and 2-50-1 MLP model (bottom-right) and missing curves 

reconstruction (top-left) and forecasting of interest rate curve (top-right). 
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