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Abstract. Kernel spectral clustering has been formulated as a primal

- dual optimization setting allowing natural extensions to out-of-sample

data together with model selection in a learning framework which is im-

portant for obtaining a good generalization performance. In this paper,

we propose a new sparse method for kernel spectral clustering. The ap-

proach exploits the structure of the eigenvectors and the corresponding

projections of the data when the clusters are well formed. Experimental

results with toy data and images show highly sparse clustering models with

predictive capabilities.

1 Introduction

Classical spectral clustering algorithms [1, 2] have been recently proven to be
very successful compared to traditional techniques such as k-means. These for-
mulations have roots in graph theory and are solved via eigenvalue problems
where certain eigenvectors contain information about the groups present on the
data [3]. One issue with classical spectral clustering is that the clusters cannot
be easily extended to out-of-sample data. A new spectral clustering algorithm
based on a weighted version of kernel PCA was introduced in [4]. This approach
is formulated in a primal and dual optimization framework allowing to extend
the clustering model to out-of-sample points via projections onto the eigenvec-
tors. The projections are expressed in terms of non-sparse kernel expansions. In
this paper, we propose a method to sparsify the clustering model by exploiting
the structure of the projections when the clusters are well formed. The proposed
approach is based on a reduced set method for approximating the projections.
The reduced set points are chosen such that they follow a special structure on
the projections. This paper is organized as follows. Section 2 summarizes the
kernel spectral clustering method. Section 3 describes the new sparse method.
Section 4 contains the experiments and in Section 5, conclusions are given.

2 Predictive Kernel Spectral Clustering

2.1 Primal - Dual Formulation

Given training data D = {xi}
N
i=1, xi ∈ R

d and the number of desired clusters k,
the following clustering model can be assumed:

e(l) = Φw(l) + bl1N , l = 1, . . . , ne
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where e(l) = [e
(l)
1 ; . . . ; e

(l)
N ] is the compact form of e

(l)
i = w(l)Tϕ(xi) + bl, Φ =

[ϕ(x1)
T ; . . . ;ϕ(xN )T ] is the N×dh feature matrix, ϕ : Rd → R

dh is the mapping
to a high-dimensional feature space of dimension dh, bl are bias terms and i =
1, . . . , N, l = 1, . . . , ne. The projections e(l) represent the latent variables of a
set of ne binary cluster indicators obtained by sign(e(l)) which can be encoded
to obtain the final k groups. Consider the following constrained optimization
problem in the primal space [4]:

min
w(l),e(l),bl

1

2N

ne∑

l=1

γle
(l)T V e(l) −

1

2

ne∑

l=1

w(l)Tw(l) (1)

such that e(l) = Φw(l) + bl1N , l = 1, . . . , ne

where γl are regularization parameters and V is a positive definite weight ma-
trix typically chosen to be diagonal. The KKT optimality conditions of the
Lagrangian of (1) are: ∂L

∂w(l) = 0 → w(l) = ΦTα(l), ∂L
∂e(l)

= 0 → α(l) = γlV e(l),
∂L
∂bl

= 0 → 1TNα(l) = 0, ∂L
∂α(l) = 0 → e(l) = Φw(l) + bl1N , l = 1, . . . , ne. Elim-

inating the primal variables w(l), e(l), bl leads to the dual eigenvalue problem
[4]:

VMΩα(l) = λlα
(l) (2)

where λl = N/γl, l = 1, . . . , ne, M = IN − 1/(1TNV 1N )1N1TNV and Ωij =
ϕ(xi)

Tϕ(xj) = K(xi, xj). The projections written in terms of the dual vari-
ables become

e
(l)
i =

N∑

j=1

α
(l)
j K(xj , xi) + bl

and the bias terms: bl = −1/(1TNV 1N )1TNV Ωα(l), l = 1, . . . , ne. In the case
when the weight matrix V = I, then (2) becomes kernel PCA. In the same way,

if V = D−1 = diag(1/d1; . . . ; 1/dN ) where di =
∑N

j=1 Ωij then (2) is related to
the random walks model for spectral clustering [5, 6]. The relationship can be
interpreted as first applying a weighted centering to the kernel matrix1 and then
applying the random walks method. This special centering consists of removing
the weighted mean of the data points in the feature space and is induced by the
bias terms in the primal model. The centering weights are given by D−11N .

2.2 Piecewise Constant Eigenvectors and Encoding

If the kernel matrix Ω represents the similarity matrix of a graph with k con-
nected components and V = D−1, then the eigenvectors α(l) associated to the
k − 1 largest eigenvalues of D−1MΩ are piecewise constant and indicators of
the corresponding connected parts of the graph. Thus, we set ne = k − 1. A
key difference with classical spectral clustering algorithms is the fact that 1N

1Since MTα(l) = α(l) and V is invertible, the eigenvalue problem (2) is equivalent to
MΩMTα(l) = λV −1α(l) where the weighted mean is removed from the rows and columns of
the kernel matrix.
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is not an eigenvector of D−1MΩ. This can be seen from the KKT optimal-
ity condition 1TNα(l) = 0 which imposes that the eigenvectors should have zero
mean. Each cluster is now represented as a single point in the R

k−1 eigenspace.
Moreover, these single points are always in different orthants due also to the
KKT optimality conditions. One way to encode the eigenvectors is to consider
that two points are in the same cluster if they are in the same orthant in the
corresponding eigenspace. A codebook can be obtained from the rows of the
matrix containing the k − 1 binarized leading eigenvectors in the columns.

2.3 Out-of-Sample Extensions and Decoding

The projections e(l) define the cluster indicators for training data. In the case
of an out-of-sample data point x, the projections become:

ẑ(l)(x) =

N∑

i=1

α
(l)
i K(x, xi) + bl.

The possibility of extending the clustering model to out-of-sample data in a
natural way corresponds to one of the main advantages of this formulation. In
classical spectral clustering, extensions to out-of-sample data are not clear and
should rely on approximations such as the Nyström method [7]. Out-of-sample
extensions also allow performing spectral clustering in a learning framework with
training, validation and test stages which becomes important for generalization.
Decoding consists of comparing the binarized projections with respect to the
codewords in the codebook and assigning cluster membership based on minimal
Hamming distance.

2.4 Collinearity and Model Selection

If the eigenvectors are piecewise constant, then data points in the same cluster
are collinear in the projections space. This is due to the fact that the projec-

tions of test points {xt}
Nt

t=1 can then be rewritten as ẑ
(l)
t = c

(l)
p

∑
j∈Ap

K(xt, xj)+
∑

u/∈Ap
α
(l)
u K(xt, xu) + bl where c

(l)
p is the constant value corresponding to the

p-th cluster Ap in the l-th eigenvector. Assuming that K(xi, xj) → 0 when xi

and xj are in different clusters then the term
∑

u/∈Ap
α
(l)
u K(xt, xu) vanishes and

the clusters are visualized as lines in the projections space (which holds for the
common RBF kernel and the χ2 kernel). Since the cluster membership depends
on the orthant in which the projected variables are located, an intuitive mem-
bership certainty measure is the distance of a given data point in the projection
space from the origin (assuming zero mean projected variables). The larger the
distance, the more certain the point belongs to the corresponding cluster. Thus,
the tips of the lines can serve as cluster prototypes. The Balanced Line Fit
(BLF) criterion introduced in [4] is an average measure of collinearity and bal-
ance of the obtained clusters on validation data and can be used for obtaining
the number of clusters k and the kernel parameters.
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3 Sparse Model

Since typically the number of required eigenvectors is much less than N , spe-
cialized techniques such as the Lanczos method [8] can be used in order to solve
(2) efficiently. However, storing the full D−1MΩ matrix would still be required.
A way to overcome this issue is to build a clustering model on a subset of the
dataset and infer the cluster membership of the remaining data points using
the out-of-sample extension. Obtaining a representative subset of the available
data can be done in a greedy manner by adding points to the training pool such
that the quadratic Renyi entropy is maximized [9, 10]. Also note that the projec-
tions are expressed in terms of non-sparse kernel expansions. The primal vectors

w(l) =
∑N

i=1 α
(l)
i ϕ(xi) can be approximated by a reduced set method. The objec-

tive is then to approximate w(l) by w̃(l) =
∑R

j=1 β
(l)
j ϕ(x̃j) where x̃j corresponds

to the reduced set of points and R ≤ N . If the reduced set is known, one ap-
proach to obtain the reduced set coefficients β(l) is given by minβ(l) ||w(l)−w̃(l)||22
which leads to solving the linear system ΩΨΨβ(l) = ΩΨΦα(l), where ΩΨΨ

mn =
K(x̃m, x̃n),Ω

ΨΦ
mi = K(x̃m, xi), m,n = 1, . . . , R, i = 1, . . . , N and l = 1, . . . , k − 1

[11, 12]. In this way, after finding β(l), the projections of a data point x can

be approximated by z(l)(x) ≈
∑R

j=1 β
(l)
j K(x̃j , x). A reduced set can be built by

considering input data points that correspond to certain positions sampled from
the lines. We propose to use both ends of the lines (endpoints and points closest
to the origin) together with the median point. Thus, the clustering model only
depends of R = 3k data points and typically k ≪ N .

4 Experimental Results

A toy experiment using the RBF kernel can be seen in Figure 1. The dataset
consists of 3 Gaussian clouds in 2D for a total number of 6, 000 data points. The
training set was selected using the quadratic Renyi entropy as described in [9]
and N = 600 points were selected. The validation set contained 1, 200 randomly
selected points and the BLF was used on validation data to find k = 3 and the
RBF kernel parameter σ = 0.56. Using these tuning parameters, the clustering
model is trained and the reduced set is obtained from the projections of training
data. The cluster indicators of the remaining data points are then inferred
via the approximated projections computed using the reduced set. An image
segmentation experiment using the χ2 kernel is shown in Figure 2. The total
number of pixels is 154, 401 (321×481). The training set consisted of N = 1, 000
pixels selected using the entropy criterion. The validation set contained 20, 000
randomly selected pixels for model selection using the BLF with obtained k = 3
and σχ = 0.04. Note the strong line structures present on the validation set
projections. Computation time for eigendecomposition and prediction was 34
seconds in a 2.4 GHz Core 2 Duo, 4 GB RAM and MATLAB 7.9. The clustering
model depends only on 9 out of 1, 000 input data points which corresponds to a
sparseness of 99.1%.
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Fig. 1: Top left: Training set and reduced set points. Top right: Training set
projections used to obtain the reduced set points (R = 9). The stars are outside
the lines and correspond to points in zones of overlap. Bottom left: Cluster
membership certainty of the full dataset. Bottom right: Inferred clustering of
the full dataset using the out-of-sample extension and the proposed method.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

e
(1)

e
(2

)

Fig. 2: Top left: Original image. Top right: Validation set projections for
model selection with the BLF. Different colors indicate different clusters. Bot-

tom left: Segment-label image. Bottom right: Inferred segmentation. The
clusters were inferred using only R = 9 out of 1, 000 training data points.
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5 Conclusions

A new highly sparse approach based on a reduced set method is proposed for
kernel spectral clustering. The methodology allows predicting the cluster indi-
cators of out-of-sample points. The clustering model only depends on a reduced
set of training points which are selected by exploiting the structure of the pro-
jections. Due to the predictive capability of the algorithm, model selection can
be done by selecting parameters such that the projections on validation data are
as collinear as possible. The simulations show the applicability of the proposed
sparse method.
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