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Abstract. The commodification of healthcare has led to an increasing
demand for personalization of patients’ treatments. Meeting this demand
requires not only the commitment of abundant resources, but also a so-
phisticated management of information systems, leading to initiatives such
as the standardization of electronic health records. As these become main-
stream, the amount of medical data available for analysis and knowledge
extraction will increase exponentially. This is coupled with a surge in novel
techniques for the non-invasive measurement and acquisition of medically-
relevant data, in various forms including signals and image. The resulting
vast amount of information - notwithstanding issues of standardization
and availability - is a valuable asset for the Computational Intelligence
community. Tapping into this data source, biomedical applications of CI
are already experimenting an extraordinary growth. At ESANN, the spe-
cial session “Computational Intelligence in Biomedicine” reflects some of
the main emerging themes in the field. This brief tutorial prefaces the
session, summarizing some of the contributions, while also providing some
pointers to opportunities and challenges for CI in biomedical research.

1 Introduction

We can trace back the origins of modern science to the figure of the French
philosopher René Descartes and his groundbreaking Discourse on the Method
[1]. Those of us working in the field of Computational Intelligence (CI) still
dwell in the shadow he casts when delving into concepts such as projective spaces,
distances, manifolds and the like. These all draw from Descartes’ seminal studies
on geometry [2], with Cartesian coordinates still deeply ingrained in the most
basic levels of our scientific reasoning.

It may then come as a surprise that one of the philosopher’s foremost inter-
ests was rather less abstract in nature: the pursuance of medical knowledge and
human health. One of the staunchest early defendants of Descartes’ new phi-
losophy was precisely a medical doctor: Hendrik de Roy. Through the delivery
of a notable and controversial series of lectures at the University of Utretch, in
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the Netherlands, on the subjects of physiology and the science of health [3], he
arguably ignited the great debate of the XV IIth Century that built the founda-
tions of modern medical science as we know it today: A medical science grounded
in experimental enquiry and reasoning.

We must leap no less than three centuries forward to find a formalization of
the concept of Evidence-Based Medicine (EBM). Not even forty years have past
since Scottish Professor Archie Cochrane laid out the foundations of EBM [4].
EBM would have certainly been sanctioned by rationalists such as Descartes or
de Roy, as it means to provide “healthcare practice that is based on integrating
knowledge gained from the best available research evidence, clinical expertise,
and patients’ values and circumstances” [5]. Its practice, even if contested from
some quarters, has become so widespread and relevant to medical science that
it has merited being shortlisted as the 8th most relevant medical milestone since
1840 by the prestigious British Medical Journal (BMJ) [6], just behind the oral
contraceptive pill and ahead of medical imaging, even as it includes, for instance,
X-rays.

The practice of EBM requires health management to be based on objective
findings, whose generality is well established, rather than on beliefs or subjective
assessment. Nothing surprising here. Unfortunately, while the practice of EBM
should concern the use of quantitative information, in concert with other avail-
able sources of knowledge -doing so in a sensible manner that suits the diverse
real clinical context-, it has also been accused of being somehow soul-less and
algorithmic, that is, of certain dehumanization. This perception may have to
do with the fact that, fuelled by the rapidly increasing development of data ac-
quisition and processing techniques, the medical field faces information overload
and plenty of data management-related stress, which can take the focus off the
patient as an individual and towards medical signals and statistical items.

While this might be seen as a concern, it may also be seen as an open field
of opportunity for data mining and for the CI techniques usually associated
with them. Information technologies play such a central rôle in current medical
research and the delivery of healthcare that they came in 9th place, just behind
EBM, in the same BMJ poll.

Perhaps paradoxically, data processing is set to be the means to reverse the
perception of dehumanization in healthcare. An example of this is pharmacoge-
nomics. Rapid advances not just in systems biology but also in Information and
Communication Technologies, including wireless processing, mobile communi-
cations, the world-wide web and algorithmic advances in CI itself, generated
the so-called 4P agenda of preventive, predictive, personalised and participatory
healthcare [7]. Importantly, this agenda is not just driven by a commodifica-
tion of healthcare made possible by technological advances, but by a yet more
powerful factor - the fact that healthcare is only sustainable in the mid-term if
costs per person are substantially reduced. And this means caring for people
while they are healthy, with an emphasis on preventive care, keeping people out
of hospitals, with care in the home a priority, and following-up chronic disease
with ambulatory measurements that, by issues both of expediency and ethics,
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need to be processed locally using automatic processing defined by CI methods.
Alerts and advice are then generated and transmitted in a minimally invasive
way, yet with life-saving potential, and an essential rôle in moderating the cur-
rent trajectory of rapidly spiralling healthcare costs.

The 4P agenda will impact on routine care practices over the next two
decades. Therefore, as we feed-forward into this century we see a step-change
in the need and use of evidence base in the delivery of healthcare, where net-
worked hospital systems generate data at a faster rate than we can turn over
for direct patient care and the advent of human genome decoding in minutes
rather than days will unleash a deluge of data at a much faster rate than we can
extract useful information from it. The twin developments of EBM and data-
rich environments provide fertile soil for the development of CI-based knowledge
engineering.

Against this setting, we thought it appropriate to set up an ESANN special
session on CI in Biomedicine. In this brief paper we assess the field of new
opportunities that opens for CI techniques in their application to an area that
is likely to increasingly demand them as tools of medical knowledge extraction.
In fact, this field of application has become so broad that a tutorial such as this
cannot even come close to cover its manifold facets. We therefore focus on some
contributions provided by the papers accepted for the session as part of the 18th

European Symposium on Artificial Neural Networks.

2 Opportunities and challenges for data mining and CI in
biomedical research

Over the last decade, biomedicine has become a data-intensive field of research
in which new data acquisition techniques appear at a staggering pace. Nature
recently devoted the cover of one of its latest issues [8] to advances in cancer
research, one of the most active biomedical areas. Even within the very nar-
row context of just this journal issue and research field, several next-generation
sequencing approaches were introduced with the specific target of monitoring
genetic changes in tumour cells. Elsewhere [9], state-of-the art data acquisition
was combined with advanced CI techniques, in the form of Bayesian mixture
models applied to identify single-nucleotide variants in the human genome.

The increasing reliance on microarrays data in genomics, and on protein chips
and tissue arrays in proteonomics, add to the wealth of information about active
metabolic pathways that is available also from (f)MRI, PET, micro CT and MR
spectroscopy. This, an already complex and diverse picture, is further compli-
cated by the heterogeneity of the available medical evidence, which extends to
expert data, for instance, on disease heterogeneity, especially in the composi-
tion of cancer samples, along with clinical indicators that are often systemic in
nature. These indicators are often expressed with discrete data, in contrast to
numeric physiological measurements. The development of high-throughput ge-
nomic technologies is forcing an in-depth re-evaluation of not only the standards
of data handling and processing, but also igniting discussion about biomedical
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data accessibility on the web [10] or in collaborative grids [11].
A further challenge stems from the need for interpretation by the clinician,

explanation to the patient, and regulatory pressures for validation and pharma-
covigilance. They all make it important to express the operation of analytical
models in clear-cut Boolean terms, with filters for patients whose risk-benefit
balance lies in favour, or against, particular therapeutic choices [12]. In this
respect, there has been, in recent years, plenty of interest in the use of rule ex-
traction from CI models in biomedical research, much of it related to the analysis
of cancer data (see, for instance, [13, 14])

3 CI in biomedicine: contributions to the ESANN 2010
special session

3.1 CI for dimensionality reduction in biomedical problems

Medicine has for long been a niche for statisticians. The central rôle played by
statistics in medical science has been long acknowledged, and its aims include the
monitoring and surveillance of health; the detection, prevention, and analysis of
causes of disease; and the evaluation of treatments for disease [15]. The challenge
of managing the complexity of biomedical data invites us to go one step further
than traditional statistics and resort to knowledge discovery and data mining in
order to implement data pre-processing strategies.

One of main and most common challenges posed by biomedical data is the
curse of dimensionality [16]. Often, these types of data are not acquired with the
specific purpose of data-based modelling, and one of the negative consequences
of this is the not too uncommon situation in which only few data records and of
large dimensionality are available for analysis. In no other fields is this more obvi-
ous than in those of the -omics family, with the development of high-throughput
genomic and proteomic technologies [10]. Very few standard statistical meth-
ods (and the same can be said for CI techniques) scale well for small data sets
of very large dimensionality. Limitations on data availability mean that the
high-dimensional spaces where data reside are inherently sparse, which entails
unexpected geometrical properties and problems with the use of standard met-
rics [17].

The problem of data high dimensionality is also one of model transparency.
Indeed, amongst the drawbacks affecting the application of CI methods in the
biomedical field (especially in everyday clinical environments) is the usually lim-
ited interpretability of the results they yield. This is, needless to say, a sensitive
issue in the medical ambit, and one that should not be underestimated: even
the best efforts put in state-of-the-art data modelling methods can be rendered
useless by lack of translation into usable medical knowledge.

One way of increasing model transparency is by explaining the operation of
CI methods using rule extraction techniques, as mentioned in the introduction.
Alternatively, dimensionality reduction (DR) can ease the interpretation of re-
sults [18]. DR methods can be categorized according to different criteria. There
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exist linear and nonlinear DR methods [17]. There are methods of Feature Selec-
tion (FS) that aim to single out one or several parsimonious subsets of attributes
that are optimal according to a given criterion (for classification, prediction, er-
ror minimization, etc.), and there are methods of Feature Extraction (FE) that
combine the available data in different ways to generate a new, smaller sets of
features to substitute the original ones. All these approaches have advantages
and limitations whose description is beyond this tutorial.

Methods of FS and FE for DR are discussed in [19] in the context of a problem
of diagnosis of human brain tumors. It is argued here that, although Principal
Component Analysis is a very common FE technique of choice in such context,
it does unfortunately suffer from limitations, including one of interpretability.
That situation makes it worth pursuing the development and use of better tar-
geted FE techniques. The proposed Spectral Prototype Extraction method is
developed within a robust variational Bayesian framework that does not sacri-
fice interpretability, while being suited to the specific characteristics of spectral
data.

A different approach to DR is found in [20] and [21]. Here, high-dimensional
data are approximated using low-dimensional manifold representations. These
representations do not only simplify the interpretation of results per se, but
are meant to provide the means for the visual display of data and results, to-
gether with information on the grouping structure of data. Visualization is
an extremely powerful tool to gain exploratory insight into data. A Bayesian
model of the manifold learning family, similar to the one used in [19], is applied
in [20] to analyze electromyographic (EMG) data recordings corresponding to
stroke patients undergoing rehabilitation therapy. This is a constrained Hidden
Markov Model suited to the analysis of multivariate time series such as the EMG
signal at hand that behaves robustly in the presence of noise. A more traditional
Self-Organizing Map (SOM) model is used in [21] to analyze both physiological
variables and treatment characteristics in patients undergoing chronic renal fail-
ure. SOM is used for qualitative knowledge extraction through visualization in
a first stage of the analyses.

3.2 CI in biomedical pharma

Clinical decision support systems have used CI methods since the end of the
fifties [22]. By 1995, more than 1,000 citations of artificial neural networks
could be found in the biomedical literature [23]. Today, a basic search on a med-
ical database such as PUBMED offers more than 17,000 results. However, this
number is substantially lower when the search also involves the term “drug mon-
itoring”. To be more precise, a PUBMED search involving “neural networks”
and “drug monitoring” only returns 18 results, an all of them quite recent (only 2
results if the search is further restricted to the terms “artificial neural networks”
and “drug monitoring”).

All of this comes to show that the application of neural networks has only
very recently (as compared to other biomedical applications) emerged as a suit-
able tool for therapeutic drug monitoring (TDM), becoming a promising and
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expanding field from both the theoretical and practical point of view.
The relevance of computer-based data analysis in the pharmaceutical sciences

has sharply increased due to the availability of vast amounts of data providing
information about treatments and response to treatments. CI methods can help
to extract information from these data, thus providing clinicians with efficient
decision support tools. There are many drugs whose effect is uncertain, es-
pecially those with narrow therapeutic ranges that are strongly dependent on
patients’ characteristics. In those cases, any aid to gauge the adequate dosages
to be administered is crucial in order to avoid overdoses (likely intoxications) or
underdoses (no relevant effect of the drug on the state of the patient).

Recently, important advances in dosage formulations, TDM, and the emerg-
ing role of combined therapies have resulted in a substantial improvement in pa-
tients’ quality of life. Nevertheless, the increasing amounts of collected data, and
the nonlinear nature of the underlying pharmacokinetic and pharmacodynamic
processes justify the development of mathematical models capable of predicting
concentrations of a given administered drug, and then adjusting the optimal
dosage.

Physical models of drug absorption and distribution, Bayesian forecasting,
neural and kernel methods have all been used to predict blood concentrations [24].
Also, very recently, there have been a few attempts [25, 26], based on Reinforce-
ment Learning, to find optimal policies (medical protocols of drug prescription)
in order to achieve a certain goal (usually defined by means of a certain pa-
tient’s state). In our special session, Sun and colleagues [27] propose Gaussian
Processes (GPs) with different covariance functions as predictors of the per-
meability coefficients of Human, Pig, Rodent and Silastic membranes. That is
not just a difficult problem but also a very relevant one in the framework of
biomedical pharma, since the delivery of drugs by means of skin patches has
become relatively commonplace over the last years. Achieved results show that
GPs perform better than quantitative structure-activity relationship (QSARs)
predictors, especially when Matérn and neural network covariance functions are
used.

All in all, and although the application of CI methods to Biomedical Pharma
has already yielded some satisfactory results, there is still a long way to go in
this area of research, in which a strong flow of activity is to be expected over
the next years.

3.3 CI for cancer and survival analysis

The introduction of the on-line software package Adjuvant! [28] ignited an in-
terest by clinicians in web-based decision support systems, especially for breast
cancer. There is a substantial history of neural network algorithms for failure
time data, also known as survival models, dating back to work by the origina-
tors of Adjuvant! [29]. However, the actual decision support package is not a
data-driven model, more so one based on results from meta-analysis calibrated
to a specific US data set and externally validated on data colleted for the British
Columbia Cancer Agency in Vancouver.
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The challenge in the field is to produce flexible models that can robustely fit
data without the need for proportionality assumptions about the hazard, and in
the presence of time dependent effects and subtle interactions between covari-
ates. This need arises because standard medical statistical models typically rely
on these assumptions, or hand-crafted parametric solutions to get around them.
In particular, the non-linearity inherent in medical data has led to the cate-
gorization of crucial prognostic indicators, such as histological stage, damaging
their robustness [30].

A central feature of survival models for cancer is the need to accurately
reflect the presence of typically right-censored data, that is to say information
about a lower-bound on the possible event date. An example would be where
a patient dies of an unrelated cause to the cancer, which prevents information
about cancer recurrence from being available after that date.

Several different modelling strategies have been derived which deal with cen-
sorship, the detail of which is outside the scope of this brief tutorial paper -
more detail may be found in [31]. There methods are typically to model the
cumulative probabilities for the risk of the event of interest occurring after any
given year, akin to directly modelling survival [32, 33] and also modelling the
condition probability of the event occurring during a discrete time interval, con-
ditional on it not having occurred prior to the start of that interval. This is
known as hazard modelling and was initially published with the Partial Logis-
tic artificial Neural Network (PLANN) [34]. Other approaches include rigorous
Bayesian frameworks applied to neural network achitectures, typically the Multi-
Layer Perceptron [35, 36]. These approaches straddle conventional statistics and
machine learning.

All of these models need to balance flexibility with good generalisation ca-
pabilities to discriminate between patient cohorts at significantly different risk
of mortality or recurrence. This requires the application of complexity control
framworks, of which the above Bayesian approaches are an example, and the
evidence approximation with Automatic Relevance Determination(ARD) is an-
other [37].

Further, analytical models need to be integrated into clinical interfaces that
are meaningful to clinicians, and efforts have been made to group patients by
risk and to explain the groupings using low-order Boolean rules, both for the
purpose of validating the operation of the neural network against expert clinical
knowledge and to simplify the prognostic model, replacing the analytical black-
box structure with a prognostic rule tree [37, 38, 39].

Some of these methods have been extended further to model more than one
competing risk, for instance local vs, distal recurrence of the tumour, when only
time-to-first-event is possible and the hazard predictions for all risks must add
strictly to unity, which can be ensured for instance using the well-known soft-
max activation function and making a clear correspondence with the objective
functions for statistical survival analysis [40].

More recently, attention has turned to applying kernel methods to survival
[41], including the Support Vector Machine. This is a relatively new field that
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seeks to exploit the remarkable discrimination ability of methods from compu-
tational learning theory, while making them applicable to failure time data with
censorship. A good example of the state-of-the-art in this field is the last paper
in this special session by Van Belle and colleagues [43].

4 Conclusions

Dimensionality reduction, pharmacogenomics and survival analysis illustrate
three application areas of considerable potential for computational intelligence
in biomedicine. While there are substantial advances in all of these areas pub-
lished in the scientific literature, particular examples of which feature in this
special session, still these fields are in their relative infancy, with much further
work to be done. Some directions for further improvement are robustness in gen-
eralization, increase specificity of outcome prediction, implement scalability to
large-scale data sets and also to combining together in a single overarching model
different signal modalities, for instance numeric data derived from physiological
measurements, together with categorical variables indicating clinical status and
ordinal variables from demographics.

Overall, computational intelligence in biomedicine is a growth area for re-
search, feeding on increasing volumes of data. It remains for the community of
researchers to integrate with each other and with the clinical and IT sectors,
to develop new machine learning models, to validated them appropriately e.g.
using the frameworks detailed in [44] and find ways to translate the research into
seamless interfaces to routine clinical practice.
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