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Abstract. In this paper we study the relevance of multiple kernel learn-
ing (MKL) for the automatic selection of time series inputs. Recently,
MKL has gained great attention in the machine learning community due
to its flexibility in modelling complex patterns and performing feature
selection. In general, MKL constructs the kernel as a weighted linear com-
bination of basis kernels, exploiting different sources of information. An
efficient algorithm wrapping a Support Vector Regression model for opti-
mizing the MKL weights, named SimpleMKL, is used for the analysis. In
this sense, MKL performs feature selection by discarding inputs/kernels
with low or null weights. The approach proposed is tested with simu-
lated linear and nonlinear time series (AutoRegressive, Henon and Lorenz
series).

1 Introduction

The analysis and modelling of time series is nowadays an important topic of
research both from the theoretical and applied viewpoints. The well-known
Taken’s embedding theorem [1] states that, for a sufficiently long time series of
a chaotic system, it is possible to reconstruct the underlying dynamics in the
state space with a time delay embedding. Therefore and in order to develop
efficient forecasting models, it is necessary to find a correct embedding of the
time series to reconstruct its trajectory in the state space. The task consists in
selecting two parameters. The first one is the lag (delay) τ , that is commonly
estimated by means of mutual information and autocorrelation functions [1, 2].
Second is the embedding dimension de, which unfolds the time series and thus
facilitates the use of a forecasting model; this dimension can be estimated using
false nearest neighbors and correlation dimension, among many methods [1].

Consider a m-dimensional state vector built with time delay embedding

x = [xt, xt−τ , xt−2τ , ..., xt−mτ ] (1)

where xt−τ is the value of the series at time t− τ . To predict the value at t + 1,
i.e., y = xt+1, we need a function f(x) which depends on the lagged values of
Eq. (1). This problem can be stated as a (non)linear multiple regression problem
f(x) = w · x + b, which can be solved using Support Vector Regression (SVR)
as shown in [3, 4].

Selecting the optimal τ and de is a difficult task. An alternative way is to
select from a sufficiently large x vector the inputs that are relevant for pre-
diction. In this case, the prediction performance and, more importantly, the
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interpretability of the results will depend strongly on the correct selection of
inputs characterized by delay and embedding. In the literature, input selection
has been carried out using filters such as δ− and γ−tests (see [5], [6]).

In this paper we propose to perform input selection by means of multiple
kernel learning (MKL, [7]). More specifically, we adapt and apply the recently
proposed SimpleMKL algorithm [8]. MKL framework allows to dedicate kernels
to model inputs and to find their optimal weighted combination through gradient
optimization. In the context of continuous valued functions, MKL wraps a
Support Vector Regression (SVR) solver for optimizing both the SVR coefficients
and the kernel weights. In this context, the definition of the optimal embedding
is reduced to a feature selection problem since the inputs associated with kernels
receiving a zero weight are discarded from the final solution. In spatial context
the problem of feature selection using MKL was already considered in [9].

2 Multiple Kernel Learning for regression

Kernel methods such as Support Vector Regression have proved to yield robust
solutions for nonlinear regression estimation. SVR minimizes a robust cost func-
tion comprising empirical risk and model’s complexity. Such approach allows
building models with high generalization performance. Trained with a suitable
kernel function K(x,x′) accounting for the similarity between data points x and
x′, SVR achieves nonlinear function estimation.

For complex patterns choosing the right kernel function for SVR is a crucial
task. Standard closed-form kernels may encode a rigid representation of the
data and do not provide interpretable solutions in terms of the importance of
the input features. A more flexible kernel can be considered by using a convex
weighted combination of basis kernels as it is proposed in [10]:

K(x,x′) =
M∑

m=1

dmKm(x,x′) with dm ≥ 0 and
M∑

m=1

dm = 1 (2)

where dm are kernel weights subjected to the sum-to-one and positivity con-
straints. Multiple kernel learning is the simultaneous optimization of the vec-
tors of the kernel weights d = [d1, ..., dM ]� and of the SVR coefficients α. This
corresponds to the search of a function f(x) =

∑M
m=1 fm(x), with fm ∈ Hm

and for which the RKHS of the final kernel H is the sum of the subspaces Hm

(see the derivation in [8]). The basis kernels Km can be dedicated to single or
groups of features, in order to reveal their importance in the final mixture by
their respective weight dm.

2.1 Simple Multiple Kernel Learning

Even if attractive in its original formulation, MKL becomes quickly intractable
with the increase of the number of both the kernels and samples considered.
Therefore, several algorithms have been proposed to solve the MKL problem
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efficiently [8, 11]. In this contribution, we consider SimpleMKL algorithm pro-
posed in [8].

SimpleMKL wraps a standard SVR solver using as kernel function the
weighted combination described in Eq. (2). Analytical differentiation of the
SVR dual function with respect to dm provides the gradient used in an iterative
optimization scheme till convergence. Positivity and equality constraints over
dm’s are granted by the use of a reduced gradient. Sparsity of the solution is a
result of l1-norm regularization of the dm coefficients.

3 Experiments

Time series analysis touches at several real life problems like environmental
monitoring or financial data analysis. However, the present paper mainly focuses
on the relevancy of MKL for time series inputs selection in a methodological
sense. Therefore, only three simulated and benchmark series are considered:
AutoRegressive (AR, Figure 1a), Henon map (Figure 1b) and Lorenz system
(Figure 1c). These series cover both linear and chaotic/nonlinear time series.
The three series are generated as follows:

AR process Henon map Lorenz system
xt+1 = 0.33xt + 0.33xt−4 xt+1 = 1 − 1.4x2

t + yt ẋt = 10(yt − xt)
+0.33xt−8 + St+1 yt+1 = 0.3xt ẏt = 28xt − yt − xtzt

with St+1 ∼ N(0, 1) żt = xtyt − 8
3zt

Lorenz system was numerically integrated using the Runge-Kutta 4 method
and with a step size of 0.01. The x-component is used to reconstruct the dy-
namics of both Henon and Lorenz. For the three series, 10000 data points were
extracted. Training, validation (selection of C, σ and ε hyper-parameters by
extensive grid search) and testing (generalization performance) sets were chosen
randomly. Training and validation subsets used in the experiments range from
10 to 200 data points. Testing set is composed of 1000 measurements. Experi-
ments with added white Gaussian noise of 1%, 5% and 10% are also considered.
Dependency of the results with respect to sampling is assessed using 5 different
training-validation splits. In all the experiments linear and nonlinear versions
of SVR and MKL were used: SVR and MKL with linear kernel (SVRlin and
MKLlin), SVR and MKL with RBF kernel (SVRrbf and MKLrbf).

3.1 Linear time series

Figures 2a-b show the final weights of the MKLlin model when applied to the
AR process with varying noise levels (Fig. 2a) and varying training set sizes
(Fig. 2b). The selection of model inputs is correct (xt, xt−4, xt−8) and stabilizes
from 50 training points on. Moreover, it shows robustness against noise. More
importantly, not only the selection is correct but also the relative weight values
follow the AR coefficients (xt, xt−4 and xt−8 contribute with equal weights).
Regarding numerical results, the performances of MKLrbf are similar to the
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Fig. 1: a) AR series; b) Henon and c) Lorenz series in the phase space

ones observed for MKLlin. Such behavior was expected, since there is no intrinsic
nonlinearity in the AR series. Actually linear/nonlinear kernel is applied as a
control of the problem’s nonlinearity. Experiments on AR series with linear and
cubic trends gave similar results.

3.2 Nonlinear time series

In this section MKL is applied to select the inputs from sufficiently large state
vectors built with different time delay embeddings. Figure 2c shows the weights
of the MKLrbf model for the Henon time series. The inputs xt and xt−1 are
selected with weights equal to 0.9 and 0.1 respectively. Notice that xt−1 gains
importance with respect to xt as the training set size increases. MKL gives some
hints about the relevance of the inputs and about the embedding dimension
which in this case is equal to 2. Figure 2d shows testing performances of the
4 models considered against training size. Linear models fail in describing the
patterns and are clearly outperformed by nonlinear ones. On the other hand,
the MKLrbf error decreases faster compared to SVRrbf because of its filtering
abilities.

Figure 3 illustrates the results for the Lorenz time series. Finding the em-
bedding of the Lorenz system is more challenging since the intrinsic dimension
of the data is higher and τ is different from the trivial value of 1. From mutual
information criterion (computed with several bin sizes) optimal τ is 17 (Fig-
ure 3a). A similarity between the MI curve and the weights of MKLrbf (with τ
set to 5 to highlight its feature selection skills) is visible in Figure 3b where a
local minimum on the weights occurs at τ ∼= 15.

Figures 3c, 3d and 3e show testing performances for SVRrbf and MKLrbf

with increasing dimension m of the state vector. Dimensions are iteratively
added one by one from xt to xt−mτ . SVR performance progressively decreases
as irrelevant inputs are added to the model, while MKL is robust to their in-
troduction. However, for τ = 17 and especially for m = 3, SVR testing error is
lower than MKL. A possible interpretation is that the kernel combination pro-
posed in this paper neglects dependency between inputs. Such dependencies can
be considered using cross-kernels dedicated to all possible binary, ternary, etc
combinations of inputs. The number of kernels and corresponding weights are
inevitably increased making the optimization problem intractable. A natural
solution would be to apply MKL as an exploratory tool for selecting relevant
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Fig. 2: Top: AR series; MKLlin weights with a) varying noise levels (training
size = 100) and b) varying training size (noise level = 1%). Bottom: Henon
map; c) MKLrbf weights with 1% of noise; d) Testing RMSE of the 4 models
considered with varying training size and with 10% of noise
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Fig. 3: Top: Average mutual information (a) and MKLRBF weights (b) with
τ = 5 for the Lorenz time series. Bottom: Testing RMSE of SVRrbf and MKLrbf

with increasing space dimensionality; c) τ = 1 , d) τ = 5 e) τ = 17 (from mutual
information)
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inputs and to use the common SVR as final predictive model.

4 Conclusions

This paper studied the efficient use of MKL for the input selection in linear and
nonlinear time series. More precisely, the SimpleMKL algorithm was used as a
data exploratory tool for selecting relevant inputs from a large input space. The
flexibility of the approach allows separating the input space and provides more
interpretable models. Future developments will include the study of cross-kernels
accounting for input dependencies and strategies to learn them automatically.
Uncertainty about MKL predictions may be addressed by applying stochastic
optimization of kernel parameters (σ’s for RBF kernel). Analysis of real univari-
ate and multivariate time series is in progress.
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