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Abstract. Spectral Clustering has reached a wide level of diffusion
among unsupervised learning applications. Despite its practical success we
believe that for a correct usage one has to face a difficult problem: given
a target number of classes K the optimal K-dimensional subspace is not
necessarily spanned by the first K eigenvectors of the graph Normalized
Laplacian. The contribution of this paper is twofold. First, we show a
bound for choosing a correct number of eigenvectors. Second, we propose a
randomized spectral algorithm able to find a clustering solution. We show
the efficacy of the algorithm with experiments on real world graphs. Our
proposal is a scheme that naturally extends the current usage of Spectral
Clustering.

1 Introduction

Spectral Clustering techniques constitute an effective toolbox for many unsuper-
vised learning applications. With simple elements from linear algebra they give
heuristic algorithms for combinatorial problems, usually NP-complete, arising
in image segmentation, clustering and graph layout. In this work we focus on
partitioning a dataset into disjoint sets so that the resulting partition minimizes
the normalized cut. This functional aims at minimizing the sum of similarity
weights across K clusters and at the same time to maximize the sum of simi-
larity weights in each cluster, called volume. Minimizing the normalized cut is
an NP-complete problem [1], but when the similarity matrix is, after a conve-
nient rearrangement of the input dataset, block diagonal with K blocks we can
easily find the desired K partitions by inspecting the first K eigenvectors of the
Normalized Laplacian matrix LN of the graph. This scheme is shared by most
of Spectral Clustering algorithms. The general case is not so easy because we
do not have any guarantee about the content of the first eigenvectors. On the
contrary in [2] a graph construction is proposed such that for every K there is
a graph where the first K eigenvectors of the Combinatorial Laplacian encode a
cut completely different from the best one. The same construction can also be
used for the Normalized Laplacian [3].

In this work we argue that despite counterexamples [2, 3] we can still rely
on Spectral Clustering but introducing two modifications. Firstly we may need
to consider more eigenvectors than the number of classes. We show a bound
that may help in choosing this number of eigenvectors M ≥ K. Secondly we
propose a randomized algorithm to recover K classes using M eigenvectors of
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the Normalized Laplacian matrix. In the next section we give a brief overview
of Spectral Clustering literature, in section 3 we present the normalized cut
problem and a bound for choosing the number of eigenvectors of the Normalized
Laplacian matrix, in section 4 we present a randomized algorithm and in section
5 there are experiments on real world graphs. We conclude with a discussion of
the ideas presented.

2 Previous work and literature

The normalized cut problem was introduced in [1] together with a recursive
spectral algorithm for image segmentation. After [1] many Spectral Clustering
algorithms have been proposed in the literature, [4, 5, 6, 7], all of these con-
sider the first K eigenvectors of the Normalized Laplacian matrix, perform some
normalization on them and finally “round” to obtain a clustering. Spectral par-
titioning was introduced for cutting graphs with [8, 9], we refer to section 4 of
[10] for a survey. Our work can be considered in between [11, 12, 13]. The
idea of randomly searching in the span of the eigenvectors of the Combinatorial
Laplacian for VLSI design was firstly proposed by [11], there they use one or
two-dimensional random projections called “probes”. Using many, if not all,
eigenvectors has been advocated by [12]. A complementary point of view is that
of discarding uninformative eigenvectors, as in [13].

3 The normalized cut

We consider symmetric weighted connected graphs. A symmetric weighted graph
is a couple G = (V,E), where V is a finite set of vertices and E is the set of
edges between vertices, together with a weight function w : V × V → [0, 1] such
that w(vi, vj) = w(vj , vi). |V | is the number of vertices. We denote w(vi, vj)
with wi,j . We define the matrix WG ∈ Rn×n such that (WG)i,j = wi,j and the
diagonal matrix DG with the degree of each vertex, i.e. di =

∑|V |
j=1 wi,j , on the

diagonal, (DG)i,i = di and 0 otherwise.
A cut of a graph is a partition of the vertices into disjoint, non-empty sets

(A1, . . . , AK) such that ∪k=1,...,KAk = V . The cut value of a subset Ak of V
is cut(WG, Ak) =

∑
i∈Ak,j /∈Ak

wi,j . The volume value of a subset Ak of V is
vol(WG, Ak) =

∑
i∈Ak

di. The problem of minimizing the normalized cut is the
following:

NCut∗ = min
A1,...,AK

NCut(WG, A1, . . . , AK) = min
A1,...,AK

K∑

k=1

cut(WG, Ak)
vol(WG, Ak)

This problem is NP-complete to solve [1], but we have an interesting heuris-
tic argument at our disposal. Let LN = I −D

−1/2
G WGD

−1/2
G be the Normalized

Laplacian of graph G and 0 = λ1 ≤ λ2 ≤ · · · ≤ λ|V | ≤ 2 its eigenvalues in as-
cending order. Following [14] any given partition can be represented as a matrix
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HA such that (HA)i,k =
√

di/vol(WG, Ak) if vi ∈ Ak and 0 otherwise. It is
straightforward to check that NCut(WG,HA) = Tr(HT

ALNHA) and this charac-
terization of the NCut allows us to use Fan Inequality and obtain a lower bound
on its minimal value, NCut∗ ≥ ∑K

k=1 λk. If the equality holds and λK+1 > λK

the subspace spanned by the first K eigenvectors is the same of HA∗ . Even if we
perturb the weights of the similarity matrix of the ideal case with a small quan-
tity of noise, the subspace spanned by the first eigenvectors will substantially
overlap the subspace spanned by the columns of HA∗ and we can find it using
“rounding” techniques. These techniques are algorithms that take as input a
noisy version of HA∗ and try to recover it.

There are examples [2] where the subspace spanned by the first K eigenvec-
tors of LN may not contain information about the best partition. Informally
our observation is that if the general gap λM+1 − λK is large the information
about the best cut can still be found in the first M ≥ K eigenvectors. This fact
is formalized by the following theorem:

Theorem 1. Let G = (V,E) be a graph and let LN be its Normalized Lapla-
cian. Let LN = UΛUT be the spectral decomposition of LN , with eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λ|V | ≤ 2 ordered in ascending order. Let M be an integer,
K ≤ M ≤ |V |−1. Let UM be the first M eigenvectors of LN . For any clustering
HA decomposed as HA = [UMUe]

[
RT

A ET
A

]T , with U = [UMUe], RA ∈ IRM×M

and EA ∈ IR|V |−M×M , the following upper bound on ‖EA‖2
F holds:

‖EA‖2
F ≤ NCut(WG, A) − ∑K

k=1 λk

λM+1 − λK
(1)

The proof can be found in [3]. This bound is a generalization of a bound in
[15] and applies for any cut HA, in particular for the best one HA∗ . Bound 1 tells
us that when λM+1 − λK is large we can filter out eigenvectors with λ ≥ λM+1

because we know that the frobenius norm of HA∗ is well approximated by the
first M eigenvectors. In the next section we present a randomized algorithm
that may use bound 1 for computing H∗

A .

4 A randomized spectral algorithm

Current Spectral Clustering algorithms [4, 5, 7] exploit the trace characterization
of the normalized cut by considering the first K eigenvectors of the Normalized
Laplacian matrix as a noisy representation of the K classes correct partition.
However counterexamples in [2, 3] show that the first K eigenvectors of the
Normalized Laplacian may not contain the information required for computing
the best cut. Motivated by these examples we propose a randomized spectral
algorithm that generalizes current spectral algorithms and considers M ≥ K
eigenvectors. Bound 1 may help in choosing the value of M . We have to make
two important observations in the case M is strictly greater than K. Firstly we
do not know where HA∗ exactly is among the span of the first M eigenvectors,
see examples in [3]. Secondly, we do not know the nature of the information con-
tained in the remaining M − K-dimensional linear subspace. In the examples
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given in [2] this information can be considered adversarial, as the related non op-
timal cuts are substantially different from the optimal ones. These observations
suggest that rounding directly the first M eigenvectors into K classes may not
work and a different scheme is needed. The algorithm spectral cut considers
as inputs a symmetric weight matrix WG of a graph G = (V,E), a number of
target clusters K, a number M ≥ K of eigenvectors of the Normalized Lapla-
cian to be rounded, denoted as UM . To recover HA∗ the randomized spectral
algorithm samples random matrices P ∈ IRM×K , with PT P = I, (PPT )1,1 = 1
and apply a rounding scheme, e.g. K-means, to UMP . The partition with the
lowest normalized cut value among the max rep samples is returned as a solu-
tion. It is necessary that ‖EA∗‖2

F is small enough to satisfy the conditions of the
rounding technique for which rounding(UMRA∗ ,K) = A∗. On the other side M
should be close to K because the probability of sampling a matrix close to R∗

decreases exponentially with M − K. The number of iterations max rep can be
estimated using results on the principal angle between random subspaces, like
[16]. A pseudocode of the algorithm is shown below. The time complexity of
the algorithm depends on the computation of UM , on the rounding procedure
and on the graph’s sparsity. For further details we refer to [3].

Alg. 1 spectral cut Rounding the first M eigenvectors of the Normalized Laplacian
of WG into K classes.

Input: A matrix WG of a weighted graph G = (V,E), a number of clusters
K, a number M , K ≤ M ≤ |V | − 1, of eigenvectors.
Output: a partition of the graph A = (A1, . . . , AK)
1 Let LN := I − D

−1/2
G WGD

−1/2
G be the Normalized Laplacian of G,

2 let ΛM ∈ IRM×M be the diagonal matrix of its first M eigenvalues
3 λ1 ≤, . . . ,≤ λM and let UM ∈ IR|V |×M be the corresponding
4 eigenvectors.
5 for k = 1, . . . , max rep
6 Let P ∈ IRM×K be a random matrix such that:
7 First row of P has norm 1, (PPT )1,1 = 1
8 PT P = I
9 (A1, . . . , AK)k := rounding(UMP,K)
10 NCut valk := NCut(WG, (A1, . . . , AK)k)
11 MinPos := position of the minimum of NCut val
12 return (A1, . . . , AK)MinPos

We should notice that, depending on the problem, different good cuts may
arise among the sampled matrices . If it is the case it should be reasonable to
modify the algorithm and return a set of solutions instead of a single one.
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5 Experiments

We tested the spectral cut on graphs from the Graph Partitioning Archive 1.
This repository contains a variety of graphs and updates the best cuts obtained
with many state of the art algorithms. It was created as a follow up of [17]. We
focus only on balanced bipartition, that is K = 2. The balance condition means
that the solution classes must have the same number of vertices, so that the car-
dinality of each partition |Ak| is ≤ �|V |/2	. In this case the spectral cut uses
the eigenvectors of the Combinatorial Laplacian LC = DG − WG = UΛUT and
the matrix HA representing a cut is such that (HA)i,k = 1/

√|Ak| if vi ∈ Ak and
0 otherwise. The rounding technique we use is simply the median cut, i.e. com-
parison w.r.t. the median value of the vector. Unfortunately bound 1 applied to
these graphs gives large values of M , on the other side for many graphs the norm
of the benchmark solution B is well approximated by the first M = 10 eigenvec-
tors, that is ‖EB‖2

F ≤ 0.15, so we used this value in the experiments. In table
1 we report the results on graphs with less than 3 ∗ 104 vertices. The obtained
cut values are within 105% from the benchmark and substantially improve the
Fiedler Median Cut which considers only the second eigenvector.

graph |V | |E| Min Max Mean FMC B ME
data 2851 15093 189 204 197 260 189 0
3elt 4720 13722 92 112 100 117 90 40∗

uk 4824 6837 21 28 26 31 20 8
add32 4960 9462 11 21 15 23 11 312∗

whitaker3 9800 28989 132 136 136 136 127 370
crack 10240 30380 190 215 203 233 184 2244

fe 4elt2 11143 32818 130 130 130 130 130 676∗

bcsstk29 13992 302748 2863 2978 2974 2978 2843 288
4elt 15606 45878 145 188 162 194 139 138∗

bcsstk30 28924 1007284 6408 6620 6470 6620 6394 252

Table 1: Results for balanced cut on graphs from the Graph Partitioning Archive,
two classes (K = 2) and 0% imbalance. For each graph we report its name, the
number of vertices and edges. We repeated the spectral cut 102 times with
max rep = 104 and we show the minimum, maximum and mean (rounded to the
nearest integer) cut values over the repetitions, the minimum often matches or
nearly matches (≤ 1.05∗B) the benchmark. In column B we show the benchmark
value. In column ME we show the number of vertices different between the
benchmark and the spectral cut, cuts with ∗ have multiple solutions with the
same value, in that case we report the greatest difference. In column FMC we
report the results of the Fiedler Median Cut. The benchmark is considered on
26 february 2009.

1http://staffweb.cms.gre.ac.uk/∼wc06/partition/
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6 Discussion

Our work goes in the direction of generalizing current Spectral Clustering algo-
rithms. Many papers in Spectral Clustering, e.g. [4, 5, 7], show conditions for
which the first K eigenvectors of the graph laplacian suffice for recovering the K
classes we are interested in. These conditions are not always met in practice and,
in the general case, the optimal solution may lie in some number of eigenvectors
M strictly greater than the number of classes K. The spectral cut we propose
is designed to recover such a solution and we also propose a bound to choose
such M . The method is not a panacea, if M −K is too large the time needed to
find the solution can be quite high. Still experimental results empirically show
that if the solution is in the span of the first M eigenvectors then it can be found
or well-approximated. Other approaches do not have this guarantee.
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