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Abstract. Improving prediction of the skin permeability coefficient is
a difficult problem, and an important issue with the increasing use of
skin patches as a means of drug delivery. In this work, we apply Gaussian
Processes (GPs) with five different covariance functions to predict the per-
meability coefficients of human, pig, rodent and silastic membranes. We
obtain a considerable improvement over quantitative structure-activity re-
lationship (QSARs) predictors. The GPs with Matérn and neural network
covariance functions give the best performance in this work. We find that
five compound features applied to human, pig and rodent membranes can-
not represent the main characteristics of the silastic dataset.

1 INTRODUCTION

The problem of predicting the rate at which various chemical compounds pene-
trate human skin is an important issue with the increasing use of skin patches
as a means of drug delivery. One key feature of this problem domain is that the
target, the skin permeability coefficient (Kp), may have a strongly non-linear
relationship with the compound descriptors (features). This has been demon-
strated in [6] and [9] on a human skin dataset.

In [6] and [9], it is also shown that advanced machine learning techniques,
especially, Gaussian Processes (GP), outperform quantitative structure-activity
relationships (QSARs), which are widely used in the pharmacy community for
human skin (but not animal skin). In this paper, we further evaluate GP on four
different membrane datasets: human, pig, rodent, and silastic. We apply a simple
näıve model to compare with the GPs on these datasets. The aims of the current
study are to validate the Gaussian Process regression model to various animal
tissues and silasticR© in predicting percutaneous absorption. Furthermore, we
investigate the performance of different covariance functions applied to GP in
this application.

2 PROBLEM DOMAIN

Predicting percutaneous absorption accurately has proven to be a major chal-
lenge and one which has substantial implications for pharmaceutical and cos-
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metic industries, as well as toxicological issues in fields such as pesticide usage
and chemical manufacture. Predictive modeling is but one of many methods
employed in order to increase the throughput of percutaneous absorption ex-
periments. The use of animal models for percutaneous penetration is often
considered essential, given the possible toxicity, cost and inconvenience of em-
ploying human skin during in vivo and in vitro experiments. human skin differs
from that of many animals in the thickness of the stratum corneum, number of
appendages per unit area and amount of skin lipids present. The widespread
use of animal skin in experiments since 1992, which is often validated by com-
parison with human skin data, only provides partial validation as it does not
specifically examine the mechanistic nature of the absorption process, as quan-
titative models can do. This work, therefore, documents the first development
of quantitative models for percutaneous absorption across animal skin, and will
allow a more accurate mechanistic comparison to be made between permeation
across human and various animal skins.

In using a model system, the researcher must take into account the inherent
differences of the various species employed and the parameters affecting percu-
taneous penetration in each species. The model selected must therefore resemble
human skin as closely as possible. Various models have been proposed by re-
searchers. [1] and [10] investigated several potential models, including rabbits,
miniature swine and rats, and concluded that rabbit skin, and then rat skin, were
the most permeable membranes, and that flux through pig skin most resembled
permeation across human skin. Further, synthetic membranes are often chosen
for in vitro studies. Their use allows greater control and manipulation of ex-
perimental conditions. Poly(dimethylsiloxane) (silasticR©, SilescolR©) is a widely
employed model membrane, which has demonstrated good agreement with Fick’s
first law of diffusion ([4] and [11]).

Several approaches have been used to try to quantify and predict skin ab-
sorption. One such method involves the use of quantitative structure activity
(or permeability) relationships (QSARs, or QSPRs), and another is the use of
mathematical modeling. These approaches have been extensively reviewed (i.e
[5]).

Usually, lipophilicity (P ) and molecular weight (MW ) appear to be the only
significant features in QSAR forms, although subset analysis has shown the sig-
nificance of other parameters [5]. P is the ratio of the solubility of a molecule be-
tween two phases; octanol, to represent the lipid phase, and water (or a buffered
aqueous solution) to represent the aqueous phase. This gives quite a range as
some molecules will prefer one phase to another, often across as wide a range as
10−7 to 107. Hence, a log scale, log P , is used to simplify the notation in common
use. For the same reason log Kp is used for skin percutaneous absorption rather
than Kp. It is important to note that log Kp is a completely different term to
log P . Kp is a corrected version of concentration (in suitable units) against time,
that allows comparison of permeation for different molecules. Each molecule may
have different properties, particularly different solubility and log P .

Recently, more new approaches, for example, artificial neural network and

458

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



fuzzy modelling, have been applied to this problem domain. [6] has employed
Gaussian Processes to analyse a human skin dataset. It has showed the un-
derlying non-linear nature of the dataset, and provided a substantial statistical
improvement over existing models. In the current study, we apply Gaussian pro-
cesses (GPs) with five different covariance functions to predict the permeability
coefficients of human, pig, rodent and silastic membranes.

3 Description of Datasets Employed

The four datasets, namely human, pig, rodent, and silastic, employed in this
study have been collated with reference to a range of literature sources. There
are 146 permeability coefficients for corresponding compounds in vitro through
human skin, 15 through pig skin, 103 through rodent skin and 19 through syn-
thetic material. These data cover a wide range of physicochemical parameters
and are representative of a wide and clinically realistic range of molecules. In
[9], it is shown that using five features, which are molecular weight (MW ), sol-
ubility parameter (SP ), lipophilicit (log P ), counts of the number of hydrogen
bonding acceptor (HA) and donor groups (HD), results in better predictions
being obtained than using only lipophilicity and molecular weight. Therefore,
in this work we follow [9] to use the five compound features.

4 METHODS

Two QSPR methods were applied to the human skin data in order to provide a
comparison between Gaussian Processes and previous approaches to this task.
The first one was proposed by [7] and derived from the Flynn dataset [3]. It is
given by log Kp = 0.71 logP −0.061MW −6.3. The second model is represented
by log Kp(cm/s) = 0.74 logP −0.0091MW −2.39, which derived from a slightly
larger and more robust dataset [5].

Since there are no QSAR models used to animal skins, we apply a simple
näıve model for comparison. In the näıve model, for any input the prediction is
always the same value, namely the mean of log Kp in the training set.

4.1 THE GAUSSIAN PROCESSES REGRESSION

A Gaussian process (GP) is defined simply as a collection of random variables
which have a joint Gaussian distribution. It is completely characterised by its
mean and covariance function. One usually considers the mean function to be
zero everywhere. The covariance function defines nearness or similarity between
the values of targets (predictions) at two input points. More details can be found
in [8].

Selecting a covariance function is important in Gaussian Processes, since the
covariance function encodes a priori knowledge which may be learned during the
training procedure. In this work, we apply five different covariance functions [8],
which are the squared exponential covariance function (SE), the neural network
covariance function (NNone), the rational quadratic covariance function,(QR)
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and two simple cases of the Matérn Class of Covariance Function, where the
polynomial of order is set to 1 (Matérn1) and 2 (Matérn2) separately. Note that
we apply independent identically distributed Gaussian noise with variance on
the noisy observations in all five covariance functions.

4.2 PERFORMANCE MEASURE

We use mean squared error (MSE), negative log estimated predictive density
(NLL), and correlation coefficients (CORR) to evaluate the performance of each
computational model. More details can be found in [6]. For comparison, a model
should have low values of both MSE and NLL, as well as a high value of the
correlation coefficient (CORR) on a given test dataset.

5 EXPERIMENTS

For each dataset, we apply the leave-one-out technique, that is, one compound
was used for testing, and all others were employed for training. This was repeated
for each compound in turn. We applied a GP toolbox [8] to do GP modelling.
Finally, we computed performance metrics in terms of all predictions.

Results are shown in Tables 1-4. It can be seen that GP with different co-
variance functions outperforms QSARs/näıve models on human, pig and rodent
datasets. Furthermore, one can see that the näıve model works better than
QSARs on the human skin dataset. For the synthetic skin dataset, GP with
covariance NNone has better performance, while others give similar results to
the näıve model with RQ even worse than the näıve predictors.

One important finding from this study is that GP modelling has completely
different performance on the pig and silastic datasets, though both of them have a
similar data distribution. When looking into the GP predictions for each dastset,
we find that GP predictions on some chemical compounds for the silastic dataset
are not good. It may suggest that five physicochemical features used in this work
are key features for the pig dataset - as they are for the human data set [6] but
they cannot represent the main characteristics of the silastic dataset. This is not
surprising in some ways. While silastic is seen as a replacement for human or pig
skin for in vitro studies, and has been shown to be useful in a number of studies
(i.e. [11]), it has been shown to be limited in some respects due to its simplicity
of structure and homogeneity, which cannot fully replicate human or pig skin.
This was shown by Cronin et al.[2], who developed a QSPR for permeation
across a silastic membrane, and found that it was dependant on molecular bulk
and hydrogen bonding only. Therefore, only limited comparisons may be drawn
from silastic data sets, whereas the greater similarity between human skin and
those mammalian species used in this study demonstrates greater compatibility.

6 CONCLUSIONS

The results presented herein suggest Gaussian Processes regression modelling
can be successfully applied to human and animal skin datasets with five specific
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Table 1: Leave-one-out results on the human skin dataset

Model MSE CORR NLL
Näıve 2.12 -1.00 -
Moss 5.93 0.07 -
Potts 15.93 0.04 -
NNone 1.22 0.65 1.55
SE 1.22 0.65 1.51

GP RQ 1.25 0.64 1.55
Matérn1 1.20 0.66 1.51
Matérn2 1.21 0.65 1.51

Table 2: Leave-one-out results on the pig skin dataset

Model MSE CORR NLL
Näıve 3.31 -1.00 -

NNone 0.80 0.85 1.52
SE 0.93 0.83 15.72

GP RQ 0.93 0.83 15.44
Matérn1 0.93 0.83 1.18
Matérn2 0.99 0.82 1.63

Table 3: Leave-one-out results on the rodent skin dataset

Model MSE CORR NLL
Näıve 1.30 -1.00 -

NNone 0.88 0.56 1.41
SE 0.86 0.58 1.40

GP RQ 0.86 0.58 1.41
Matérn1 0.83 0.60 1.38
Matérn2 0.84 0.59 1.39

compound features. In this application, all five covariance functions employed
work equally well on the human, and rodent skin datasets, while the neural
network covariance function is better than the others on the pig, and especially
synthetic membranes. We find that when selecting a suitable covariance func-
tion, the one whose principal eigenvectors can account for as much as possible
of the total variance should be chosen. Finally, we find that five compound fea-
tures applied to human, pig and rodent membranes cannot represent the main
characteristics of the silastic dataset.
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Table 4: Leave-one-out results on the synthetic skin dataset

Model MSE CORR NLL
Näıve 5.79 -1.00 -

NNone 3.57 0.60 2.03
SE 5.45 0.23 2.52

GP RQ 6.33 -0.70 2.96
Matérn1 5.55 0.08 2.72
Matérn2 5.19 0.22 2.65
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