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Abstract. Richness of dynamics is a desirable feature of Echo State
Networks (ESNs) limited by a known high redundancy of state units acti-
vations. We show how this feature is mainly influenced by the Markovian
state space organization of ESNs through a Principal Component Analy-
sis (PCA) of the reservoir space. Relevances of principal components are
coherent with Markovianity, whose role is further enlightened by investi-
gating the strong relation among the suffix elements of the input sequence
and the most relevant directions of variability in the state space.

1 Introduction

Echo State Networks (ESNs) [1, 2] are emerging as an efficient approach to
Recurrent Neural Networks (RNNs) modeling. An ESN (typically) consists in a
large, random and sparsely connected reservoir hidden layer of recurrent units
plus a linear readout layer of feed-forward units. The key feature of ESNs is that
the reservoir can be left untrained after initialization, restricting training to the
readout part, whose parameters can be adapted by efficient linear regression.

The reservoir should provide the readout with a richly varied pool of dynam-
ics from which to linearly combine. Dimensionality of the reservoir is a relevant
factor responsible for increasing the dynamics diversification and network perfor-
mance (e.g. [3, 4]). However, high correlation among reservoir units activations
is a well known fact in ESN modeling (e.g.[5, 6, 7]), making the approach to
complex tasks more difficult. Several measures for reservoir goodness have been
proposed in ESN literature. The pairwise correlation among reservoir units and
the entropy of state distributions are two of the most popular metrics [5, 7],
leading to alternative ESN architectures, such as the Decoupled ESN (DESN)
[6], and to methods for optimizing reservoirs by using Intrinsic Plasticity (IP)
(e.g. [8]) or maximization of a time-averaged entropy of echo states [9]. However,
simple tools still lack to be exploited.

It is known that RNNs with contractive state dynamics have the inherent
ability to discriminate among different (recent) input histories in a Markovian
flavor even without training the recurrent connection weights (e.g. [10]). Input
sequences sharing a common suffix drive the same network into states which are
close to each other proportionally to the length of the common suffix. This also
applies to ESNs [11]. Markovianity has also revealed a major role in determining
the success and limitations of ESNs in predictive applications [4].

In this paper, the issue of redundancy (intended as high pairwise correlation)
among reservoir units activations is put in relation to the Markovian organization
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of ESNs dynamics. Markovianity rules both the global behavior of the network
and the local behaviors of each state unit. It is therefore likely to expect that
this characterization leads to similar activations among reservoir units and thus
to redundancy, with higher redundancy induced by stronger degrees of Marko-
vianity. Our investigation exploits Principal Component Analysis (PCA) [12]
as a simple and useful tool to analyze ESN dynamics, by isolating interesting
orthogonal directions of variability in the reservoir state space. The relevance
of principal components (PCs) of reservoir states and their relations with suffix
elements of the input ground our analysis and allow us to trace redundancy back
to the Markovian nature of ESN dynamics.

2 Echo State Networks

ESNs have been introduced in [1]. The equations describing the basic model are:

x(n) = f(Winu(n) + Ŵx(n − 1)); y(n) = Woutx(n) (1)

where u(n), y(n) and x(n) respectively represent the input, output and state of
the network at pass n. Win is the input-to-reservoir weight matrix, Ŵ is the
recurrent reservoir weight matrix and Wout is the reservoir-to-output weight
matrix. Ŵ is usually a sparse matrix, with a percentage of connectivity below
20%. Typically, the activation function is tanh for the reservoir units and is
linear for the output units. Common variants to equation 1 can be found in [1].

To get a valid ESN, the “echo state property” must hold. Two conditions
for the echo state property, in case of tanh as reservoir activation function, are
provided in [1]. They both involve a scaling of the matrix Ŵ to have a spectral
radius less than unity (necessary condition) or a maximum singular value less
than unity (sufficient condition). The maximum singular value of matrix Ŵ is
its Euclidean norm and governs the contractivity and consequent Markovianity
of the state transition function in equation 1 [4]. For this reason we call it
the contraction coefficient of the network, indicated by the symbol σ, and use
it instead of the spectral radius to scale the matrix Ŵ. A smaller value of σ
corresponds to a stronger Markovian characterization of network state dynamics.

3 Principal Component Analysis of Echo State Networks

In the following, we will refer to simple symbolic input sequences without covari-
ance among input elements to feed the networks in experiments. We considered
an alphabet of 10 symbols, A = {a, b, . . . , j}. Each symbol in a sequence was
randomly selected from a uniform distribution over A. A uniform spacing in
(0, 1] was adopted to numerically represent each symbol, such that symbol a
was coded as 0.1, symbol b was coded as 0.2, and so on up to symbol j, coded
as 1.0. For each experiment, an input sequence of length 100 was used as ini-
tial transient, while a 1000-long sequence was used to collect reservoir states.
For every time step n = 1, . . . , 1000, the network state x(n) was computed and
stored as a column in a matrix X, with a number of rows equal to the reservoir
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dimension and a number of columns equal to the number of time steps. PCA
was then applied to matrix X.

ESNs with different reservoir dimensions and σ were considered, while the
sparse connectivity among reservoir units was fixed to 10%. Weight values in
Win were randomly chosen according to a uniform distribution over [−0.1, 0.1].

Redundancy of reservoir units activations can be clearly shown by the rel-
evance of PCs of ESN states (i.e. the eigenvalues of the covariance matrix of
X). This study can be used as a simple tool to assess the richness of ESN dy-
namics. As PCs represent orthogonal directions of variability in the state space,
a greater number of relevant PCs indicates a richer set of state dynamics and
reservoir units able to better diversify their behavior. We collected the relative
relevance of PCs of reservoir states with varying σ and the reservoir dimension.
Results, averaged over 10 independent trials and scaled in [0, 1], are presented
in Fig. 1. A first general observation is that, since we used a semilog scale, the
relevance of PCs shows an exponential decay with the associated PCs ranking,
with values eventually falling under machine precision. A small number of PCs
represent almost all the variability in the state space, confirming the expected
high redundancy. For σ = 0.9 and reservoir dimension equal to 100, the first
three PCs collected on average the 99.4% of the total relevance.
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Fig. 1: Relevance of PCs of reservoir states. For each PC, the ratio between its
variance and the total variance in the PC space is reported. (a): σ varying in
[0.1, 1.9] and reservoir dimension fixed to 100. (b): Reservoir dimension varying
between 10 and 800 (σ = 1.9). The relevance dimension is in log scale.

More in detail, Fig. 1a reports the relative relevance of PCs for ESNs with
100 reservoir units, varying σ from 0.1 to 1.9 (corresponding to mean spectral
radius values from 0.05 to 0.98). It is evident that decreasing the value of σ
(i.e. increasing the Markovianity of the state transition function) leads to lower
relative relevances of PCs with smaller variance. More contractive ESN dynamics
present a smaller number of orthogonal directions with non-negligible relevance
and thus are characterized by higher redundancy. This observation is coherent
with the Markovian nature of the ESN dynamics. Indeed, the range of behaviors
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of each state unit shrinks towards the global Markovian dynamics as σ decreases.
Fig. 1b shows the relative relevance of PCs for ESNs with σ = 1.9 and

with varying reservoir dimension from 10 to 800 units. The application of PCA
graphically shows how much increasing the reservoir dimension can be effective
in allowing a differentiation of the state dynamics. From Fig. 1b we may also
observe that the enhancement of the richness of ESN dynamics is attenuated
as the reservoir dimension gets larger. While a great difference can be noted
between the 10 units case and the 100 units case, a much less evident difference
emerges from a comparison between the 500 units case and the 800 units one,
suggesting that for a given degree of Markovianity there exists a saturation effect
in the number of units.

The following investigation on the meaning of the PCs of the reservoir states
can enlighten the Markovian organization of ESN state space and eventually its
relationships with the richness of the dynamics.

We considered a 100 units reservoir with σ = 0.3. In Fig. 2 we plotted the
projections of the reservoir states into the first two PCs space (PC scores). Each
point represents a state of the network and is labeled with the suffix of length 2,
i.e. the couple (next-to-last, last), of the input sequence which drove the network
in that state. Fig. 2 clearly reveals that the first two PCs contain sufficient
information to reconstruct the input sequence suffix of length 2. In particular,
the first PC groups states according to the last input symbol, while the second
PC groups them according to the 2nd-last input symbol. The influence of the
previous parts of the input sequence is not graphically appreciable.
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Fig. 2: Markovian organization (suffix based clusters) resulting on the first two
PCs space of reservoir states. Note the different scales between the two axes.

The relation between symbols of the input suffix and the PCs of reservoir
states is further and explicitly enlightened in Fig. 3, referring to the same ESN
setting introduced for Fig. 2. A nearly linear relation between the last input
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Fig. 3: Suffix input symbols vs most relevant PCs of reservoir states. (a): Last
input symbol vs first PC. (b): 2nd-last input symbol vs second PC. (c): 3rd-last
input symbol vs third PC. (d): 4th-last input symbol vs fourth PC.

symbol and the first PC can be seen from Fig. 3a. The first PC, i.e. the
direction of greater variance in the reservoir space, may be almost identified by
the variability on the last input symbol and the symbols are discriminable on
intervals of the PC values. Even more noteworthy is the presence of analogous
relations among other suffix elements of the input sequence and subsequent PCs
with decreasing variance. While the dynamics of each unit is ruled by the same
type of Markovian behavior, well represented by the first PC, the differences
among the Markovian dynamics of the state units activate orthogonal directions
of variability. In particular, being isolated from the first PC, the second PC
reveals its nature mainly related to the second element in the Markovian ranking
of relevance. Such relations were found up to the 4th-last input element and the
fourth PC (Fig. 3b, 3c, 3d), whereas the strength of the relationship rapidly
decreases in the past temporal direction.

These relations revealed the nature of ESN state space organization, enlight-
ening its Markovian flavor: most recent input symbols directly influenced most
relevant directions of variance in reservoir state spaces, with dramatically de-
creasing strength for older input entries. Moreover, although the dynamics of
each unit is Markovian, and hence dominated by the last observed input element,
the PCA of the reservoir states reveals a nice spectral property on older input
elements (up to a certain order).
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4 Conclusions

The study of relative relevances of PCs has been used as simple tool to assess
the richness of network dynamics. In fact, the effect of diversification among
the Markovian dynamics of each single unit has been revealed by showing the
increasing relevance of PCs with increasing reservoir dimension. The main re-
sult concerns the strong relation between redundancy of reservoir units activa-
tions and Markovianity of ESN dynamics. PCA have revealed high redundancy
of reservoir units, and stronger Markovian characterizations of state transition
functions have resulted in higher redundant reservoirs. Markovian ordering on
the suffix elements of the input sequence has shown a tight relation to the most
relevant PCs, providing also an insight on the order of Markovianity involved.
Therefore, we can conclude that main redundancy effects in ESNs follows from
the inherent Markovian nature of reservoir state space organization.

We believe that this investigation, especially because of the simplicity of
the exploited tool, can contribute to an easier understanding of features and
limitations of the ESN class of neural network models.
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