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Abstract. This paper proposes a method for segmenting and clus-
tering an audio flow on the basis of speaker turns. This process, also
known as speaker diarization, is of major importance in multimedia in-
dexation. Here, we propose to realize this process online and without any
prior knowledge on the number of speakers. This is done thanks to a sta-
tistical modelling of speakers based on a size-monitored growing neural
gas algorithm.

1 Introduction

Speaker diarization is a process by which a machine automatically splits and
labels an audio stream into homogeneous regions according to speakers. It has
very important applications and is often a prerequisite to multimedia material
indexation, automatic subtitling or active help for ear-impaired people. In the
most challenging cases, nothing is known about the speakers (no model), their
number nor the number of appearance of each particular speaker. Also, no prior
knowledge is available about the quality of the audio material. Usually, the
assumption that speakers never talk simultaneously is made. The diarization
process can therefore be split into two distinct phases. First, speaker turns have
to be detected, that is the boundaries of homogeneous speech segments (ideally
as long as possible) are identified. Second, a clustering phase arises to assign
each segment to a speaker label in an unsupervised manner.

Most often, even if the first phase is usually done online, the second oc-
curs off-line and the full audio material has to be recorded before clustering can
be applied [1, 2]. Very few online methods can be found in the literature [3].
This limitation prevents anytime use of indexation engines involving speaker
diarization. Anytime applications are nevertheless more and more common and
especially in the domain of audio-visual surveillance systems or automatic gener-
ation of meeting minutes [2] for instance. In this paper, we propose an algorithm
based on statistical modelling and topological neural networks to perform online
speaker diarization.

The rest of this paper is organized as follows. Section 2 explains how speech
is pre-processed so as to extract meaningful features. Section 3 describes the
splitting procedure. Section 4 describes the topological-neural-network-based
method. Section 5 provides experimental results. Finally, Section 6 concludes.

*This work has been supported by the EUREKA project LINDO (ITEA2 (06011)).
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2 Feature Extraction

So as to reduce the amount of data to be processed and take advantage of natural
redundancy, features are extracted from the speech signal. A lot of features are
known in the field of speech processing but among them, Mel Frequency Cep-
strum Coefficients (MFCC) [4] are know to perform well. The MEL! analysis
technique provides weakly correlated coeflicients which are meaningful parame-
ters for speech recognition but also speaker identification [5]. We therefore chose
to extract 24 MFCCs from 32ms sliding analysis windows overlapping by 22ms.
They constitute the 16 components of a so-called acoustic vector or feature vec-
tor. An acoustic vector is thus extracted every 10ms.

FFT . MEL log || IDTC .
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Fig. 1: MFCC computation

MFCC coefficients are obtainned as described in Fig.1. First, a Fast Fourier
Transform (FFT) is applied to N acoustic samples (s[n],e[0,n—1]) S0 as to ob-
tain the N coefficients of the speech spectrum (S[j]cjo,n—1]) (zero-padding could
be used to increase the number of spectrum coefficients). Typically, speech is
sampled at 8 kHz and 32ms represent approximatively 256 samples (N = 256).
Secondly, the MEL-spectrum vector (S[k]xe(o,15)) is obtainned by feeding a MEL
filter bank with the magnitude of the spectrum. The MEL filter bank actually
approximates the non-linear human hearing process by transforming the fre-
quency scale into a non-linear scale [6]. The reduction in coefficient number
(from N to 16) arises from the filtering of this transformed spectrum. A log-
arithmic transform followed by an Inverse Discrete Cosine Transform (IDCT)
finally provides the MEL-cepstrum (or MFCC) coefficient vector (c[i];c[o,15)) for
the current window.

3 Speaker Turns Detection

Although several methods can be cited to realize this splitting procedure (see
[2], Section 2.2), a distance-based method is chosen here. Speaker changes will
be detected as maxima of a distance computed between contiguous sets of acous-
tic vectors similarly to [7]. To compute this distance, two sliding windows are
defined over acoustic vectors. Each window contains 300 acoustic vectors repre-
senting 3 seconds of speech. If we suppose that the acoustic vectors are drawn
from a 16-dimensional Gaussian distribution, determining a distance between
two sets of acoustic vectors reduces to the computation of a statistical distance
between two Gaussian distributions whose parameters have to be estimated for

IThe name comes from the word melody
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each window. Notice that this implicitly means that a speaker has to speak dur-
ing at least 3 seconds at each turn. Many statistical distances may be proposed
[8] but we only considered the Mahalanobis distance (d}2 ,;;) and a normalized
version of the Euclidian distance (d¥, ) defined by (the latest being equivalent
to the Mahalanobis distance if the variance-covariance matrix is diagonal):

1, _ _ 1, _
dyiag = 5(#2 — i) (Z122) " (fi2 — [i1)

dNor = - i 2 = )"
n =0 0102

where i1 and ¥; (resp. fio and o) are the mean vector and the covariance
matrix of acoustic vectors in the first window (resp. second window).

The distance is computed every 500ms meaning that the two analysis win-
dows are slided of 500ms and that statistics are recomputed at each step. This
provides a discrete distance signal from which maxima have to be detected on-
line. From experiments, this distance signal being actually quite noisy a low-
pass filter is first applied to avoid extra detections. The maxima detection is
threshold-based. The first assumption is that two consecutive maxima cannot be
found within a temporal window of width ¢ (this means that one person speaks
at least t seconds, typically 20s). Second, the absolute maximum in a t-width
window should be above a given absolute threshold « (automatically computed
as a multiple of the standard deviation o of the distance computed so far). Fi-
nally, there should be a number p of distances within the temporal window that
are below an other threshold 3 automatically computed as a proportion of the
detected maxima magnitude. In other words, in a window of width ¢, we select
the absolute maxima if it is above o and if it at least p% of the other distances
are below 8 (« and ( being computed automatically). We kept this speaker
turn detection computationally simple because the novelty of this paper resides
in the clustering part which is explained hereafter. Moreover, false detections
can be recovered to a certain extent by an appropriate clustering method able
to merge consecutive segments if they where uttered by a same speaker.

4 Speaker Clustering

The originality of this paper resides in the speaker clustering method and espe-
cially because on-line computation is strongly highlighted. This implies manag-
ing signals as streams. The current speaker is characterized by the current dis-
tribution of the acoustic vectors he/she produces. This distribution may slightly
change as one person speaks, but is supposed to change more significantly when
the speaker changes. Tracking such non-stationary distribution, dealing with
smooth changes as well as dramatic ones, has been tackled in the framework of
video processing by a suitable vector quantization technique [9]. This technique,
named GNG-T (for Growing Neural Gas with Target), is used here.
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GNG-T consists in quantifying a distribution with a finite set of prototypes,
as with the k-means algorithm [10]. The main differences are twofold. First,
GNG-T prevents from setting the number of prototypes in advance, but rather
adjusts this number so that the quantification error is kept constant to a prede-
fined target. During distribution changes, the number of prototypes may vary
dynamically, thus avoiding both oversampling and undersampling of the distri-
bution. The second difference with k-means is that prototypes are structured
as graph, that reflects the “shape” of the distribution, see [11] for details. The
setting up of this graph has been adapted from GNG algorithm [12]. This graph
is not explicitly used here, but it gives GNG-T the ability to adapt quickly to
smooth as well as abrupt distribution evolutions, the latter occurring when the
current speaker changes.

Clustering is thus done as follows. A GNG-T algorithm is fed with acoustic
vectors (MFCC) of the last time segment which boundaries were found during
the speaker turn detection phase. The use of GNG-T provides a graph that
represents the MFCC distribution of the current speaker. Once computed, each
graph, corresponding to one segment, is stored. After each graph computation,
the current graph is compared to the others.

To do so, we need a comparison method between graphs. Here again, we
will use a distance-based method. A distance between graphs has therefore to
be defined. There exist several metrics in the literature [13] and several were
tried. We only report here the choice that resulted in better performances. The
chosen method consists in associating each node of one graph the closest node
in the other graph and to sum the distances of the formed pairs. This distance
is commutative.

The clustering procedure is then as follows. The current graph is compared
in terms of distance with the graphs extracted from previous segments. If the
distance is above a given threshold § (typically quite low), the segment is not
eligible for being associated to the same speaker. The mean distance between all
the non-eligible segments is then computed and provides an information about
the mean distance between different speakers. A second threshold 7 is computed
as a multiple of this mean distance and serves to associate the current speaker
to a previous segment. If there is no segment for which the distance is below -,
than a new speaker label is created. Since each graph is computed once for each
segment and possesses a few nodes compared to the number of initial acoustic
vectors, the distance computation can be done online in real time even for a
large number of segments.

5 Experiments

Experiments have been conducted on the BREF80 database [14]. This database
contains several hours of French read-speech spoken by 90 different native speak-
ers (50 female and 40 male speakers). Eleven speakers were randomly selected
in this database. A 1-hour and a 10-hour audio files were then created by con-
catenating segments randomly selected in the audio material corresponding to
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these 12 speakers. The segment duration ranges from 10 to 40 seconds and the
test databases contains respectively approximately 150 and 1500 segments. Sev-
eral measures were computed. First, after the speaker-turn detection stage, the
sensibility and the purity were computed as follow :

TP
Sensibilit = ———— x 100
ensibility(%) TPLEN ~
Purity(%) = time of main speaker in the segment « 100

total time of the segment

where TP stands for true positives (the correctly detected transitions) and FN
stands for false negatives (detections where there is no speaker-turn change).
Thus, we try to reach high values of both the sensibility and the purity measures
which will be obtainned for correct detections and longer homogeneous segments.
Results are displayed in Table 1.

’ \ Sensibility \ Purity ‘
DB 1h 96.0 % 97.3 %
DB 10h | 96.7% | 96.6 %

Table 1: Results of speaker-turn detection
] | Match. (N) [ Match. (T) | Purity | Comp. Purity [ n Speakers |

DB 1h 97.0 % 98.0 % 1.03 1.03 12
DB 10h 95.1 % 96.8 % 1.03 1.02 11

Table 2: Results of speaker clustering

Then, the clustering method is evaluated. To do so, several metrics are used.
First, the matching measures compute the percentage (in terms of global number
(N) or in terms of time duration (T)) of correctly matched segments (correctly
labelled segments after clustering according to the ground truth). The Purity is
computed as before but replacing the main speaker in the segment by the main
speaker in the corresponding segment of the ground truth. The Comp. Purity
measure is complementary to the Purity measure and is computed as the ratio
of the time used by the main speaker of the cluster (given by the automatic
method) in the corresponding segment in the ground truth. This measure is
mandatory to assess the quality of the clustering because a good purity value
can be reached by over segmentation but will produce a bad comp. purity value.
A good labelling will therefore lead to high matching values as well as purity
and comp. purity values close to 1.

Results are displayed in Table 2 together with the number of detected speak-
ers (n Speakers) (remembering that there are actually 11 speakers). It can be
seen that the results are very good (12 or 11 speakers are found, the segments
are almost pure and the matching is accurate) and similar to the state of the art
[1]. Remember than unlike most of the state-of-the-art methods, our algorithm
is online. Notice that results of Table 1 can be improved by merging consecutive
clusters sharing the same label.
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6 Conclusion

In this paper we proposed a new online speaker diarization algorithm. This algo-
rithm is split into two phases : a splitting procedure and a clustering procedure.
The novelty of this paper resides essentially in the clustering procedure. This is
based on the modeling of the distribution of acoustic features for a given speaker
as a graph with a reduced number of nodes compared to the initial distribution.
This graph is obtainned thanks to the GNG-T algorithm and the speakers are
compared according to an inter-graph distance measure. This distance-based al-
gorithm can be performed online since it only works on small graphs. Moreover,
it also doesn’t require any model of the user or any prior information about the
number of speakers unlike most of the state-of-the-art algorithms. Performance
of the algorithm has been assessed on a standard speech database. Experimental
results show that the proposed method reaches fairly good results comparable
to the state-of-the-art although being online and totally unsupervised.
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