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Abstract. High-dimensional data sets are often embedded in two-dimensional 

spaces so as to visualize neighborhood relationships. When the map is effective 

(i.e. when short distances are preserved) it is a powerful way to help an analyst to 

understand the data set. But, mappings most often show defaults and the user is 

then led astray. According to this notion, a mapping should not be considered 

when its overall quality is not good enough. Many imperfect mappings can 

however be exploited by informing the user of the nature and level of defaults. In 

this work, we propose to visualize local indices trustworthiness and continuity for 

that purpose. 

1 Mappings 

When dealing with high-dimensional data the capacity to visualize the "spatial 

organization" is a powerful way to help an analyst to understand the data set. Its use 

provides a critical benefit for extracting information or can (for example) lead the user 

to the most suitable analysis method. This point is the main purpose of dimensionality 

reduction methods (also called mapping methods). Especially, Multi Dimensional 

Scaling (MDS) is the set of methods (including [2, 3, 7, 8, 10]) designed to embed 

data in a low-dimensional Euclidean space (the so called "output space") while 

preserving "maximally" the distances observed between data in the original space 

with a special attention to short distances. A main difference between methods can be 

found in the mean used to quantify the level of interest of each distance (that is to say, 

how much a given distance can be considered as "short"). 

Using dimensionality reduction on a given dataset involves an underlying hypothesis: 

it assumes that data lies on (or close to) a low-dimensional submanifold of the 

original space. Following this line, the dimensionality of such a manifold is named 

"intrinsic dimension" of the dataset and should be chosen as the dimension of the 

output space. To limit the distortions Multidimensional scaling method unfolds the 

submanifold and delivers it on the output space. 

2 Defaults 

If the dimensionality reduction is successful, the resulting map allows one to observe 

the local organization of the dataset. But, naturally, a good result cannot always be 
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reached. For example, if the intrinsic dimension of the dataset is clearly higher than 

the dimension of the output space, the map cannot be correct. Other features can lead 

to unavoidable defaults. Especially, when the topology of the manifold and of the 

output space are different (for example, if data is on the surface of a sphere and the 

output space is a plane, just as in Fig. 1). To avoid these problems, some authors [5, 

6] propose to try mapping data onto non-planar output spaces (such as spheres or 

tori). It should however be noticed that visualizing such output spaces is less easy, 

and in practice we often ignore which topology fits the best with the analyzed data. 

In general, when dealing with real data, mappings most often come with defaults. In 

such a case, the user is lead astray. According to this line of thinking, when the 

several existing methods for evaluating the overall quality of the mapping do not 

indicate a fair enough result, the map should not be considered. We however think 

that many imperfect mappings can still be exploited. Indeed, in real life, we are used 

to working with rough maps. The best known example is the planishere (Fig. 1).  

 

Fig. 1: Earth map. The surface of the 3-dimensional sphere is displayed onto a 2-

dimensional space. Dashed lines emphasize tears. 

The Earth map is indeed an imperfect mapping. As anyone knows, several tears must 

necessary be introduced. In the present example, the Pacific Ocean and the poles are 

torn. This map shows then important defaults and, following the previous reasoning, 

ones could advice rejecting its use. However, everyone is used to (correctly) inferring 

geographic information from the planisphere. The difference between the planisphere 

and mapped data in a data-mining process is that we have knowledge about default of 

the Earth map while we have nothing similar when analyzing unknown data. If, 

similarly, we had information about nature and position of defaults, a reasonably 

useful inference from the map to original data would be possible.  

3 Local evaluation of default 

3.1 Our contribution 

Even if several global methods have been proposed to evaluate the overall quality of a 

map, very few methods exist for evaluating it locally. In a previous paper [4], we set 

up for that purpose a new method based on cost functions of Curvilinear Component 
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Analysis [2] and Sammon's mapping [7]. In another paper, one of us proposed to 

visualize the default from a chosen point of view by coloring the map according to the 

distance from a data point selected by the user [1]. In the present paper, we propose to 

localize a classical measure of mapping default: trustworthiness and continuity [9, 

10], which allows us to visualize the defaults straight in the relevant location on the 

map. So that, the map provides at the same time an estimation of the relative position 

of the data and the local quality of this estimation. 

3.2 Local trustworthiness and local continuity 

Venna and Kaski define trustworthiness and continuity [9, 10] as: 
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where: 

* k is the number of considered neighbors (and has to be chosen by the user). 

* N is the number of data samples. 

* r(i,j) is the neighborhood rank (1 for the first neighbor, 2 for the second neighbor, 

etc…) of data point j from points i point of view in original space. 

* r
*
(i,j) is the neighborhood rank of data point j from data point i point of view in 

output space. 

* Uk(i) is the set of data that are one of the k-nearest neighbors of data point i in the 

output space but not in the original space. 

* Vk(i) is the set of data that are one of the k-nearest neighbors of i in the original 

space but not in the output space. 

We define local trustworthiness and local continuity as: 
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where Trustworthinessk(i) (respectively Continuityk(i)) corresponds to the local 

trustworthiness (respectively continuity) on data point i. Trustworthiness (respectively 

continuity) is the average of local trustworthiness (respectively local continuity) on 

every data point. 

3.3 Coloring Voronoï cells  

In order to make the set of N local measures construable, we propose to visualize 

them straight onto the map, by coloring the Voronoï cells of the points. The use of 

Voronoï cells has been proposed in [1] when it provides views easier than coloring 
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each data points. Each mapping is duplicated twice in order to display both of the 

indexes (local continuity and local trustworthiness). 

4 Example 

4.1 Several maps  

Fig. 2: 2-dimensional mappings 

obtained from 3-dimensional data 

using several dimensionality 

reduction methods: curvilinear 

component analysis (CCA) [2], 

Sammon's mapping [7], Isomap [8], 

data-driven high dimensional scaling 

(DD-HDS) [3], and local MDS with 

a λ-parameter = 0.5 (LMDS0.5) [10]. 

 

Let us suppose that we face unknown data. Some dimensionality reduction methods 

are used to visualize the dataset (Fig. 2). But, how can we trust what we see? Even 

from such low dimensional original data (the original dataset is only 3-dimensional), 

inferring their structure from the different mappings is obviously cumbersome (or 

even useless); at least as long as we have not identified the mapping defaults first. 

4.2 Local evaluation  

The positions of gray points (Fig. 3) allow a comparison between global qualities of 

each mapping according to trustworthiness and continuity. In the present example, no 

map can be set aside: there is no map having lower trustworthiness and continuity 

than another one. Moreover, we cannot clearly decide which map to use from 

trustworthiness and continuity. 

However, maps with Voronoï cells colored according to the previously presented 

method allow visualizing defaults locally. We can observe that Isomap and Sammon's 

mapping have provided maps with almost no fairly displayed areas: trustworthiness is 

very low most everywhere, and continuity is somewhat low in most of maps too. DD-

HDS and Local MDS (with λ = 0.5) reached maps with large no-default zones but the 
repartition of defaults makes maps difficult to understand.  

The result of CCA is more intuitive: the only defaults are tears which lie all around 

the map. We can trust the "continuious" area and their local topology. Data points 

lying on border of the map should then be connected. The proximity measure can then 

be used to explore the exact neighborhoods of points [1] and catch the local connected 

address.  
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Fig. 3: five mappings of a 3-dimensional data (fig 4) projected on a 2-dimensional 

space. Each map corresponds to a grey circle in the (1-continuity) - (1- 

trustworthiness) graph (the lower the circle, the less false neighborhood – the more 

the circle is to the left, the less tear). At the side of each circle, the corresponding 

map is shown twice with local trustworthiness and local continuity displayed as 

color of Voronoï cells. Left inserts: local trustworthiness (dark for low 

trustworthiness, light for high trustworthiness), dark areas show false 

neighborhood zones. Right inserts: local continuity, dark areas show torn zones. 

Color-scales are the same for every insert and are shown at the top right corner. 

4.3 True data  

Original data points lie on the surface of a 3-dimensional sphere (Fig. 4). 

 

Fig. 4: Original 3-dimensional data. 
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5 Conclusion 

In the present paper, we firstly highlight how critical the visualization of defaults is. 

Secondly, we adapted the "continuity" and "trustworthiness" measures proposed by 

Venna and Kaski [9, 10] to make them quantifying defaults locally. Lastly, we show 

level of default by coloring Voronoï cells rather than items to allow a better 

visualization of the results. We claim that visualizing defaults is necessary for a 

practical use of multidimensional scaling. At that time, we work on a tool to display 

the local trustworthiness and local continuity using a single map. 
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