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Abstract. We propose a new algorithm for the design of overcomplete
dictionaries for sparse coding that generalizes the Sparse Coding Neural
Gas (SCNG) algorithm such that it is not bound to a particular approxi-
mation method for the coefficients of the dictionary elements. In an appli-
cation to image reconstruction, a dictionary that has been learned using
this algorithm outperforms a dictionary that has been obtained from the
widely-used K-SVD algorithm, an overcomplete Haar-wavelet dictionary
and an overcomplete discrete cosine transformation (DCT).

1 Introduction

In order to learn a new representation of given data x1, . . . ,xL,xi ∈ RN , we are
looking for a dictionary C ∈ RN×M that minimizes

Eh =
1
L

L∑
i=1

‖xi − Cai‖22 (1)

where xopt
i = Cai with ai = arg mina ‖xi − Ca‖, ‖a‖0 ≤ k denotes the best

k-term representation1 of xi in terms of C. The number of dictionary elements
M and the maximum number of non-zero entries k are user-defined model pa-
rameters. Methods such as Optimized Orthogonal Matching Pursuit (OOMP)
[1] can be used in order to find an approximation of the coefficients ai of the
best k-term representation. The K-SVD algorithm [2] can employ an arbitrary
approximation method for the coefficients in order to learn a dictionary from
the data. Using data that actually was generated as a sparse linear combina-
tion of some given dictionary, it has been shown that K-SVD or Sparse Coding
Neural Gas (SCNG) [3] can be used in order to reconstruct the dictionary only
from the data even in highly overcomplete settings under the presence of strong
noise. Unlike K-SVD, the SCNG algorithm is bound to a specific approximation
method for the coefficients, i.e., OOMP.

Here, we propose a generalization of the SCNG approach that, like K-SVD,
can employ an arbitrary approximation method for the coefficients. In order
to demonstrate the performance of the method, we learn a sparse dictionary
for image reconstruction. We compare the obtained performance of the learned
dictionary to the performance of a dictionary learned with K-SVD, an overcom-
plete Haar-wavelet dictionary and an overcomplete discrete cosine transforma-
tion (DCT).

1‖a‖0 is equal to the number of non-zero entries of a.
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2 From vector quantization to sparse coding

A vector quantizer represents each given sample by the closest codebook vec-
tor. Vector quantization can be understood as a special case of sparse coding
where the coefficients are constrained by ‖ai‖0 = 1 and ‖ai‖2 = 1, i.e., vector
quantization looks for a codebook C that minimizes (1) choosing the coefficients
according to (ai)m = 1, (ai)l = 0 ∀l 6= m where m = arg minl ‖cl − xi‖22.
In contrast to hard-competitive learning approaches for vector quantization, the
Neural Gas (NG) [4] algorithm considers in each learning step all possible en-
codings, i.e., a1

i , . . . ,a
M
i with (aji )j = 1. The encodings are sorted according to

their reconstruction error

‖xi − Caj0i ‖ ≤ ‖xi − Caj1i ‖ ≤ · · · ≤ ‖xi − Cajpi ‖ ≤ · · · ≤ ‖xi − CajMi ‖ . (2)

In each learning iteration every codebook vector cl is updated. The update is
weighted according to the rank of the encoding that uses the codebook vector
cl. It has been shown in [4] that this type of update is equivalent to a gradient
descent on a well-defined cost function.

Here we want to directly apply this ranking approach to sparse coding. Sim-
ilar to the NG, for each given sample xi, we consider all K possible coefficient
vectors aji , i.e., encodings that have at most k non-zero entries. Note that K
grows exponentially with M and k. The elements of each aji are chosen such that
‖xi−Caji‖ is minimal. We order the coefficients according to the representation
error that is obtained by using them to approximate the sample xi

‖xi − Caj0i ‖ < ‖xi − Caj1i ‖ < · · · < ‖xi − Cajpi ‖ < · · · < ‖xi − CajKi ‖ . (3)

Let rank(xi,a
j
i , C) = p denote the number of coefficient vectors ami with ‖xi −

Cami ‖ < ‖xi−Caji‖. Introducing the neighborhood hλt
(v) = e−v/λt , we consider

the following modified error function

Es =
L∑
i=1

K∑
j=1

hλt
(rank(xi,a

j
i , C))‖xi − Caji‖

2
2 (4)

which becomes equal to (1) for λt → 0. In order to minimize (4), we consider
the gradient of Es with respect to C, which is

∂Es
∂C

= −2
L∑
i=1

K∑
j=1

hλt
(rank(xi,a

j
i , C))(xi − Caji )a

j
i

T
+R (5)

with

R =
L∑
i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C))

∂rank(xi,a
j
i , C)

∂C
‖xi − Caji‖

2
2. (6)

Adopting the proof given in [4], it can be shown that R = 0. Hence, we can
perform a stochastic gradient descent on (4) with respect to C by applying
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t = 0, . . . , tmax updates of C using the gradient based learning rule

∆C = αt

K∑
j=1

hλt
(rank(x,aj , C))(x− Caj)aj

T
(7)

for a randomly chosen x ∈ X where λt = λ0 (λfinal/λ0)
t

tmax is an exponentially
decreasing neighborhood-size and αt = α0 (αfinal/α0)

t
tmax an exponentially de-

creasing learning rate. After each update has been applied the norm of the
column vectors of C is set to one. Then a new training sample x is selected, the
corresponding aj are determined and the next update of C can be performed.

3 A bag of orthogonal matching pursuits (BOP)

So far, for each training sample x, all possible coefficient vectors aj , j = 1, . . . ,K
with ‖aj‖0 ≤ k have been considered. Since K grows exponentially with M and
k, this approach is not applicable in practice. However, since in (4) all those
contributions in the sum for which the rank is larger than the neighborhood-
size λt can be neglected, we only need the first best ones with respect to the
reconstruction error.

In the following, we extend OOMP such that not only the best but the
first Kuser best coefficients aj are determined, at least approximately. OOMP
iteratively constructs a given sample x out of the columns of the dictionary C.
The algorithm starts with U jn = ∅, Rj0 = (r0,j

1 , . . . , r0,j
M ) = C and εj0 = x. The

set U jn contains the indices of those columns of C that have been used during
the j-th pursuit with respect to x up to the n-th iteration. Rjn is a temporary
matrix that has been orthogonalized with respect to the columns of C that are
indexed by U jn. rn,jl is the l-th column of Rjn. εjn is the residual in the n-th
iteration of the j-th pursuit with respect to x.

In iteration n, the algorithm looks for that column of Rjn whose inclusion in
the linear combination leads to the smallest residual εjn+1 in the next iteration
of the algorithm, i.e., that has the maximum overlap with respect to the current
residual. Hence, with

yjn =
(
rn,j1

T
εjn)/‖rn,j1 ‖, . . . , (r

n,j
l

T
εjn)/‖rn,jl ‖, . . . , (r

n,j
M

T
εjn)/‖rn,jM ‖

)
(8)

it looks for
lwin(n, j) = arg max

l,l/∈Uj
n

(yjn)l . (9)

Then, the orthogonal projection of Rjn to rn,jlwin(n,j) is removed from Rjn

Rjn+1 = Rjn −
(
rn,jlwin(n,j)(R

j
n

T
rn,jlwin(n,j))

T
)
/(rn,jlwin(n,j)

T
rn,jlwin(n,j)) . (10)

Furthermore, the orthogonal projection of εjn to rn,jlwin(n,j) is removed from εjn

εjn+1 = εjn −
(

(εjn
T
rn,jlwin(n,j))/(r

n,j
lwin(n,j)

T
rn,jlwin(n,j))

)
rn,jlwin(n,j) . (11)
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The algorithm stops if ‖εjn‖ ≤ δ or n = k. The j-th approximation of a, i.e.,
aj , can be obtained by recursively tracking the contribution of each column of
C that has been used during pursuit j. So far, we described how a pursuit is
performed. In order to obtain a set of approximations a1, ...,aKuser , where Kuser

is chosen by the user, we want to conduct Kuser different pursuits. To obtain
Kuser different pursuits, we implement the following function

Q(l, n, j) =


0 :

If there is no pursuit among all pursuits that have
been performed with respect to x that is equal to
the j -th pursuit up to the n-th iteration where in
that iteration column l has been selected

1 : else .

(12)

Additionally, we track all overlaps yjn that have been computed during a pursuit
j. Let sj be the number of iterations of the j-th pursuit. If m pursuits have been
performed, among all previous pursuits, we look for the largest overlap that has
not been used so far:

jtarget = arg max
j=1,...,m

max
n=0,...,sj−1

max
l,Q(l,n,j)=0

(yjn)l (13)

ntarget = arg max
n=0,...,sjtarget−1

max
l,Q(l,n,jtarget)=0

(yjtargetn )l (14)

ltarget = arg max
l,Q(l,ntarget,jtarget)=0

(yjtargetntarget
)l . (15)

We replay pursuit jtarget up to iteration ntarget. In that iteration, we select
column ltarget instead of the previous winner and continue with the pursuit until
the stopping criterion has been reached. We repeat this procedure until Kuser

pursuits have been performed.

4 Experiments

We extracted 10000 random patches of natural images of size 8× 8 and learned
an overcomplete dictionary based on these patches. Either the K-SVD algo-
rithm or the method proposed in this paper were employed for learning (α0 =
0.1, αfinal = 0.01, λ0 = 20, λfinal = 0.01). In order to show the gain that is ob-
tained by the soft-competitive learning, we also learned a dictionary where the
neighborhood-size for our method was practically zero (λ0 = λfinal = 10−10),
which corresponds to hard-competitive learning. Additionally, we included over-
complete Haar-wavelet and DCT dictionaries in the experiment. The size of the
dictionaries was M = 441. For k, the number of non-zero coefficients, we used
2, 5 and 10. We performed 10 training epochs, which corresponds to 100000 up-
date steps according to (7). For the K-SVD algorithm, we performed 50 learning
iterations, each using 2000 random patches that were randomly chosen every 10
iterations. In all cases the coefficients were obtained from the BOP method that
is proposed in Section 3 where the number of pursuits was set to Kuser = 20.
For the K-SVD method only the coefficients of the best pursuit provided by
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BOP were used for learning. In order to remove the DC compononent from the
image patches, for K-SVD and our method the first dictionary element was set
to
√

1/64 and kept constant during learning. It was also forced to participate in
each linear combination that was determined by the BOP method thus implicitly
increasing k by one.

From a given image, we removed a certain percentage of all pixels. Then,
for each 8× 8 patch of the incomplete image we computed the coefficients with
respect to a given dictionary using the BOP method (Kuser = 20). Only the
remaining pixels were used, i.e., the dimensions of the dictionary elements cor-
responding to the missing pixels were not considered. δ, the minimum norm
of the residual for the BOP stopping criterion was set to 0.32 = ‖0.04 · 1‖,
1 ∈ R64 which corresponds to an average error of approximately ±10 in 8-bit
grayscale images. In order to reconstruct the image patch, we then took the lin-
ear combination of the complete dictionary elements using the best coefficients.
Finally, the estimation of each missing pixel at a certain position in the image
was obtained as the mean value of all estimated patches at that position.

Table 1 shows the original image, the same image after 70 percent of all
pixels have been deleted, as well as the reconstruction that was obtained from
the different dictionaries used in the experiments. It can be seen that the learned
dictionaries, i.e., K-SVD and our method, clearly outperform the Haar and DCT
dictionaries. From Table 2, it can be seen, that the method proposed in this
paper leads to the smallest root mean square error and mean absolute error with
respect to the original image as well as to the smallest mean number of non-zero
coefficients required to approximate the image patches up to accuracy δ = 0.32.
This holds for different percentages of missing pixels and different choices for
the maximum number of non-zero coefficients.

5 Conclusion

We proposed a generalization of the SCNG approach that outperforms other
image encoding dictionaries in image reconstruction experiments in terms of
reconstruction accuracy. The new approach can be combined with an arbitrary
approximation method for the coefficients of the sparse codes.
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original image image after 70% of all pixels
have been removed

reconstruction obtained
from soft competitive learn-
ing as proposed in this
paper

reconstruction obtained
from overcomplete DCT
dictionary

reconstruction obtained
from overcomplete Haar
dictionary

reconstruction obtained
from dictionary that was
learned using K-SVD

Table 1: Visual comparison of the reconstructions obtained from the different
dictionaries. Parameters: M = 441, k = 5, δ = 0.32, α0 = 0.1, αfinal = 0.01, λ0 =
Kuser = 20, λfinal = 0.01.

k, maximum number of
nonzero coefficients:

2 2 5 5 10 10

percentage of missing
pixels:

50 70 50 70 50 70

RMSE this paper (soft) 0.0291 0.0352 0.0260 0.0348 0.0264 0.0352
RMSE this paper (hard) 0.0299 0.0359 0.0271 0.0358 0.0274 0.0361
RMSE K-SVD 0.0314 0.0379 0.0283 0.0370 0.0290 0.0367
RMSE DCT 0.0341 0.0395 0.0276 0.0377 0.0270 0.0379
RMSE HAAR 0.0381 0.0452 0.0353 0.0436 0.0346 0.0438
MAE this paper (soft) 0.0161 0.0177 0.0140 0.0169 0.0138 0.0175
MAE this paper (hard) 0.0165 0.0182 0.0144 0.0174 0.0142 0.0178
MAE K-SVD 0.0174 0.0194 0.0149 0.0182 0.0149 0.0180
MAE DCT 0.0186 0.0205 0.0148 0.0184 0.0140 0.0186
MAE HAAR 0.0209 0.0233 0.0178 0.0217 0.0170 0.0217
MNZ this paper (soft) 1.9810 2.0899 2.8051 2.8781 3.2520 3.0272
MNZ this paper (hard) 1.9894 2.0967 2.8462 2.9050 3.3012 3.0333
MNZ K-SVD 1.9894 2.0972 2.9064 2.9559 3.5840 3.0741
MNZ DCT 2.0290 2.1338 2.9785 3.0531 3.4791 3.2184
MNZ HAAR 2.0312 2.1346 3.0385 3.0039 3.4949 3.1208

Table 2: Obtained root mean square error (RMSE), mean absolute error (MAE)
with respect to the original image and mean number of non-zero coefficients
(MNZ) required in order to approximate the incomplete image patches up to an
accuracy of δ. Parameters: M = 441, δ = 0.32, α0 = 0.1, αfinal = 0.01, soft:
λ0 = Kuser = 20, λfinal = 0.01, hard: λ0 = λfinal = 10−10, Kuser = 20.
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