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Abstract. The assessment of visible differences in leaf shape between
plant species or mutants (phenotyping) plays a significant role in plant re-
search. This paper investigates the application of unsupervised data clus-
tering techniques for phenotype screening to find hidden common shape
categories. A set of two wildtypes and seven mutations of Arabidopsis
acted as a test case. K-Means, NG, GNG, SOM and ART2a were eval-
uated by classical validity indices and one index derived from the task
at hand. K-Means showed the best results and a low agreement between
classical validity measures and task constraints was found.

1 Introduction

In plants, leaves have common functions to supply energy and oxygen by means
of photosynthesis; however, leaves exist in many different forms, presumably
reflecting different evolutionary strategies to cope with different environments.
It has been suggested that differences in margin form influence the ability of a
leaf to withstand environmental stress and leaf shape has been used as a proxy
for temperature estimations in paleobotany [1].

It has been well known that gene networks as well as environmental cues
control leaf shapes in a highly orchestrated manner. In order to clarify the role
of genes involved in leaf development, precise description, quantification and
categorization of leaf phenotypes are vital; for example, if two genes are working
in the same signaling pathways, or if two genes are allelic, final leaf shape of each
mutant may be almost identical. Similarly, if two genes are working in different
signaling pathways, their double mutant phenotype may be more severe [2, 3, 4].

For this paper, nine genotypes of Arabidopsis thaliana are considered. The
task constraints are twofold. (i) Shape Partitioning: An unknown number of
shape groups which partition due to similarity in leaf shape have to be found. A
solution to this problem is unsupervised clustering. We tested a number of well
known clustering techniques which solve this constraint due to their inherent
similarity measure applied to shape properties. A number of validity indices
ranked clustering results. (ii) Genotype Fragmentation: If a genotype highly
contributed to create certain leaf characteristics, then this genotype should be
found in lesser number of clusters formed by the unsupervised clustering tech-
nique (ideally one genotype is found only in one cluster). Therefore it is desired
to partition the data set so that a cluster contains a mutant line in its entirety
while one cluster should also be able to hold more than one genotype. This
constraint is manually evaluated and we suggest a validity index which directly
incorporates this task constraint.
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Fig. 1: (a) Two wild types (col-0 and ws-2 ) and seven mutations of Arabidopsis
have been used for the cluster analysis and validation. (b) The principal shapes
which span the 6 dimensional subspace for cluster partition; PC1 and PC2:
variation elongation and serration respectively; PC3: asymmetric variation leaf
width, PC4: variation base width; PC5 and PC6: shape variation in lobing &
width and asymmetric leaf bending respectively.

This paper shall contribute to the development of automated analysis systems
of high throughput [5] that allow reliable and replicable analysis of biological
structures.

2 Image Acquisition

The following wild type and mutant lines of Arabidopsis thaliana (L.) Heynh.
were used in this study: col-0, ws-2, angustifolia (an), elongata1 (elo1-1), gpa1-1
and gpa1-2 variants, jagged1 (jag1), rotendufolia3 (rot-3) and serrate (se). Each
condition held between 14 and 24 samples. Leaves were fixed at 28 days after
sowing and carefully flattened while keeping the leaf margin intact. Images of
flattened leaves were taken using a CCD camera mounted on a stereomicroscope
at 13919 DPI and stored as 8-bit grey value bitmap. Figure 1a shows two
examples per line as polygons created by the shape quantification procedure
described below.

3 Shape Quantification and Feature Space

Leaves were segmented from the background by gray value thresholding and a
Canny edge detector was used to create the boundary trace. A point distribution
model (PDSM) was then fitted by an Active Contour [6]. Then a plane curve
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Table 1: Best clustering results for K-Means, NG, SOM, ART2a and GNG
based on various validity measures. Decision rule per index and cluster size per
validation in brackets. Best results indicated in bold.

Cluster Validity (Cluster)
Method HE (min) D (max) DB (min) C (min) S (max)
K-Means 0.161 (4) 0.136 (8) 0.847 (6) 0.036 (8) 0.609 (3)
NG 0.211 (4) 0.132 (8) 0.903 (4) 0.045 (6) 0.561 (4)
SOM 0.311 (4) 0.041 (4) 1.467 (4) 0.120 (4) 0.399 (4)
GNG 0.240 (5) 0.076 (5) 1.273 (5) 0.062 (5) 0.510 (5)
ART2a 0.392 (6) 0.019 (6) 1.896 (6) 0.405 (6) -0.220 (6)

was created through spline interpolation and 500 points in total sampled by arc
length parameterization. The shape was aligned with its longest extension along
the y-axis and the base was cut where the petiol has increased by 40% from its
average width. Shapes were normalized in perimeter length. The normalized
PDSM’s (x, y) values formed a 1,000 dimensional vector per sample for further
analysis.

In order to reduce dimensionality a PCA was performed on the shape data.
Six principal components of largest Eigenvalues span the feature space and cover
a total of 98% in data variance. Figure 1b shows the principal components at ±2
standard deviation of coefficient value from the mean shape. Figure 2a shows
the distribution of genotypes for the first two principal components.

4 Clustering Methods and Validation

Clustering is an unsupervised process without the need of predefined classes and
examples that would indicate a particular partitioning within the samples. We
applied a number of clustering algorithms known from the literature. They are
the K-Means [7], Neural Gas (NG) [8], Self Organizing Map (SOM) [9], Growing
Neural Gas (GNG) [10] and Adaptive Resonance Theory (ART2a) [11]. In K-
Means, NG and GNG, each prototype or weight vector represented one cluster.
Membership was decided by minimal Euclidean distance. For the SOM, a unified
distance matrix based linkage clustering technique from the SOM Toolbox [12]
was used to find clusters on the topological map. In ART2a, a neuron of the
recognition layer represented a data cluster and membership was decided by
maximum pattern correlation.

Evaluating and assessing the results of a clustering algorithm is the main
subject of cluster validity. A validity criterion judges the partition into compact
and well-separated clusters. The following criteria are considered in this paper:
Dunn Index (D) [13], Davies-Bouldin Index (DB) [14], C-Index (C) [15] and
Silhouette Index (S) [16]. High D and S indices as well as low DB and C indices
indicate well-separated compact clusters.

However, these indices reflect a very common constraint on the cluster parti-
tion. For phenotype screening, as mentioned in the introduction, a constraint of
low genotype fragmentation from clustering was formulated. We evaluated the
fragmentation manually (see Figure 3) but also automatically via the distribu-
tion of sample ’hits’ a genotype has per cluster. Let hij be the relative frequency
(or ’hits’) of the i-th genotype in the j-th cluster, the following index (based on
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Fig. 2: (a) Shape space spanned by PC1 and PC2; (b-f) K-Means cluster parti-
tioning selected by different validity indices.

normalized entropy)

HE = − 1
ns ln(nc)

ns−1∑

i=0

nc−1∑

j=0

hij ln(hij) (1)

is minimal if genotypes are assigned to just one cluster in all their samples.
Terms nc and ns are the number of clusters and genotype classes respectively.
We shall term this index ’Hit-Entropy’ (HE).

5 Results

For K-Means and NG, cluster number ranged from three to eight. For each
model size, ten trials with randomized initial codebooks (K-Means, NG, GNG,
SOM) were run. Cluster outputs were evaluated with the described indices.
According to the indices’ maximum or minimum decision rule, the best cluster
configuration was found.
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Fig. 3: The genotype class fragmentation through data clustering; Normalized
hits per cluster (width segments), sorted by descending value; Number of gray
shaded segments equals number of clusters a genotype is fragmented into; HE
and S index showed the lowest fragmentation.

Table 1 shows the cluster performance. K-Means leads the performance table
followed by NG and GNG. For the cluster model creation, the trivial cases of
two and nine clusters were not considered. In preliminary tests, validity indices
(besides HE) tend to choose these trivial cases in clustering results for NG and
K-Means. It is interesting to note that GNG created close cluster numbers
compared to ’brute force’ selection based methods K-Means and NG with similar
cluster partitioning (data not published here).

Shape Partitioning: Figure 2b-f shows cluster partitions selected by valid-
ity index evaluation. PC1 and PC2 basically represent shape elongation and
serration respectively. The DB-index seems to select the best obvious data par-
titioning (five clusters). Genotypes elo1-1 and an (both elongated shape) form
a characteristic separate cluster as well as the se genotype. A group of outliers
was clustered separately (DB-index). For the DB-index it is apparent that the
partition is based on cluster separation. The task specific index HE chose a
configuration of four clusters due to overlapping genotype classes (gpa1-1 and
gpa1-2 ).

Genotype Fragmentation: Figure 3 depicts the fragmentation of genotypes
into clusters. Presented are always the winning configurations from Table 1 per
index. The aim is to find a configuration with minimal fragmentation. HE, as
expected, chose such a configuration followed by S index. D, DB and C indices
chose fragmented configurations. This manual evaluation shows that classical
validity indices not necessarily meet this task constraint.

6 Conclusion

Automated screening of biological structures generates a replicable and objective
analysis compared to subjective analysis by eye sight. With the development of
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high throughput imaging and growth apparatus, analysis techniques have to be
developed and evaluated in parallel to motivate a still lagging advanced and
systematic approach to leaf shape phenotype screening.

The evaluation of unsupervised cluster results is not a trivial task. Config-
urations generated from randomized initial conditions and varying number of
clusters have to be evaluated due to task constraints. For the task of phenotype
screening two constraints were formulated. While an index like DB was able to
select a reasonable cluster partition, it failed to choose a configuration of mini-
mal genotype fragmentation. Our task specific index HE was able to generate a
compromise between shape similarity grouping and genotype fragmentation and
derived an underlying cluster structure of four from the dataset.
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nen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, pages
397–402. North-Holland, Amsterdam, 1991.

[9] T. Kohonen. Self-Organizing Maps. New York : Springer-Verlag, 1997.

[10] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. ‘Neural-Gas’ network for vector
quantization and its application to time-series prediction. IEEE Transactions on Neural
Networks, 4(4):558–569, July 1993.

[11] G. A. Carpenter, S. Grossberg, and D. Rosen. ART 2-A: an adaptive resonance algorithm
for rapid category learning and recognition. In Proc. IJCNN-91-Seattle International
Joint Conference on Neural Networks, pages 151–156, 1991.

[12] Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha Parhankangas. Self-organizing
map in Matlab: the SOM toolbox. In Proceedings of the Matlab DSP Conference, 1999.

[13] J.C. Dunn. Well separated clusters and optimal fuzzy partitions. J.Cybern., 4:95–104,
1974.

[14] D.L. Davies and D.W. Bouldin. A cluster separation measure. Trans. Pattern Anal.
Machine Intell., 1(4):224–227, 1979.

[15] L. Hubert and J. Schultz. Quadratic assignment as a general data-analysis strategy.
British Journal of Mathematical and Statistical PsychologySchn, 29:190–241, 1976.

[16] P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

516

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.




