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Abstract. A pattern recognition mechanism is proposed that uses in-
hibitory oscillations as fundamental ingredient. The mechanism realizes
selective inhibition that could not be reached without oscillations. It uses
couplings that are motivated by physiology. Since inhibitory oscillations
are key to the generation of cortical gamma oscillation, the proposed mech-
anism may also shed new light on the gamma oscillation functionality.

1 Introduction

Recent years brought increasing evidence that the inhibitory system plays an
essential role in the generation of cortical gamma rhythms; see [1] for an article
with a recent list of references. Related theoretical considerations mostly dealt
with the conditions that cause the inhibitory generation of these rhythms. Here,
we take another point of view by studying whether inhibitory oscillations provide
a particular benefit with respect to pattern recognition.

In the following, we therefore propose a pattern recognition mechanism that
uses inhibitory oscillations as fundamental ingredient. In section 2, we give
heuristic arguments for the mechanism. In section 3, we give a concrete model
and examples that confirm the pattern recognition capability of the mechanism.
To realize the particular effect of the inhibitory oscillation, it turns out to be
essential to include a frequency spread of the excitatory units. The chosen
couplings are inspired by physiology. Accordingly, the mechanism may also shed
new light on the possible functionality of the gamma oscillations.

2 The Shadowing Mechanism: Selective Inhibition

To formulate the mechanism, a few assumptions about the coupling structures
have to be made; see [2] for detailed physiological reviews.

Firstly, we consider a network of “columns”, where each column consists of an
excitatory and an inhibitory unit, each rather representing a set of (biological)
neurons. Evidently, we assume mutually excitatory and inhibitory couplings
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Fig. 1: The oscillatory lines illustrate an oscillation of the inhibitory pool with
minimal inhibition whenever the time axis is touched and maxima in between.
The rectangles represent tendencies of excitatory units to fire at times, marked
through the positions of the rectangles, that are (a) compatible, or (b) not
compatible with the inhibitory rhythm, corresponding to the generating and
non-generating roles of the units, respectively. In case of (b), the inhibitory
effect suppresses the activity, indicated through lower height of the rectangles;
see section 2 for more explanations.

between, respectively, excitatory and inhibitory units. Memory of patterns is
implemented through these excitatory couplings.

Secondly, each excitatory unit is assumed to excite the inhibitory unit of the
same column (this makes the columnar architecture). Thirdly, it is assumed that
this specificity is lost in the feedback, that is, the inhibitory units inhibit different
(neighboring) excitatory units, so that the excitatory units (in a neighborhood)
are subject to inhibition from the same inhibitory pool.

In the following, the frequency of oscillating excitatory activity plays a central
role. Without considering the inhibitory effect, the different excitatory units may
tend to fire with different frequencies. The most trivial source of such frequency
spread (and the one that is illustrated with the example of section 3) is due to
different states of activity: on-state units have higher frequencies than off-state
units. Moreover, frequency differences between on-state units may be due to
Hebbian memory and corresponding pattern frequency-splitting [3].

The frequency spread of possible excitatory oscillations may be crucial when
combined with another oscillation that carries its own frequency: the oscillation
of the inhibitory pool. This constitutes another drive of the excitatory rhythm
since excitatory units tend to be active whenever the inhibitory effect decayed
towards a minimum. Then, inhibition is weak and excitatory firing may arise,
thereby exciting the inhibitory units of the same column and increasing the
inhibitory effect again, and so on, resulting in the oscillatory dynamics; see [4]
for a review of the corresponding cortical dynamics, the gamma cycle.

To formulate the combined excitatory and inhibitory dynamics, we need to
combine the two oscillatory drives of excitatory dynamics, that is, the one re-
sulting from excitatory dynamics with frequency spread, and the other resulting
from the inhibitory pool.

Let us first neglect the frequency spread, that is, we assume that all excitatory
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units tend to fire with the same frequency. A balanced situation may then have
all excitatory units active with the same frequency at times when the inhibitory
effect of the oscillating inhibitory pool is minimal. Figuratively spoken, one may
identify the inhibitory effect with some “heat” and, accordingly, one may refer
to the timing of the excitatory units as being “in the shadow”.

Let us also introduce the notion of “generating” excitatory units: these are
the ones that generate the rhythm of the inhibitory pool through exciting the
inhibitory unit of there own column. In case of global shadowing, all excitatory
units are generating. Their situation may be illustrated as in figure 1a.

Let us now also consider the frequency spread of the excitatory units. In par-
ticular, we may assume that only a subset of excitatory units remains generating.
The other ones - for example, the ones less strongly driven by excitatory inputs
- may just not be able to cope with the frequency of the inhibitory pool. Figu-
ratively spoken, not being able to escape into the shadow, these non-generating
excitatory units are “not able to freeze” or “melt away”; figure 1 illustrates
this temporally selective inhibition, where the inhibitory effect of the pool on
particular excitatory units is stronger (weaker) in panel b (a).

3 Model and Example: Relevance of Frequency Spread

In this section, we sketch an oscillatory neural network model that implements
the principles that were described in the foregoing section.

The model may be constructed as complex-valued gradient system, anal-
ogously to the construction in [3]. We consider a network with N columns,
indexed though n = 1, ..., N . In comparison to the model in [3], the essential
extension is that each column consists not only of an excitatory units with ampli-
tude Un = g(un), g(·) = (1 + tanh(·))/2, and phase φn, but also of an inhibitory
unit. The latter is described with amplitude Vn = g(vn) and phase θn. Using
the approach of [3], the dynamics is given by

τ̃E(un)
dun

dt
= −un + In − ∂

∂Un
(REE + REI) (1a)

dφn

dt
= ω0,n + ω1,nUn − 2

τEUn

∂

∂φn
(REE + REI) (1b)

τ̃I(vn)
dvn

dt
= −vn + I ′n − ∂

∂Vn
(RIE + RII) (1c)

dθn

dt
= ω′

0,n + ω′
1,nVn − 2

τIVn

∂

∂θn
(RIE + RII) , (1d)

where τ̃E(un) = (1 − Un) τE , τ̃I(vn) = (1 − Vn) τI , and τE , τI are time scales.
External inputs are given by In, I ′n, the intrinsic frequencies are ω0,n, ω′

0,n, while
ω1,n, ω′

1,n describe shear parameters.
The gradients in equation 1 describe the couplings. Notice, for sake of sim-

plicity we assumed real-valued gradient functions. These couplings between
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excitatory (E) and inhibitory (I) units are then chosen to be in accordance with
the assumptions made in section 2:

REE = − 1
2N

N∑
m,n=1

hmnUmUn

(
α +

β

2
cos(φm − φn)

)
(2a)

RIE = −γ

2

N∑
n=1

UnVn cos(φn − θn) (2b)

REI =
η

2N

N∑
n,m=1

UnVm (1 − cos(φn − θm)) (2c)

RII =
η′

4N

N∑
n,m=1

VnVm (1 − cos(θm − θn)) (2d)

The coupling constants α, β, γ, η, η′ are assumed to be real-valued and positive.
The following examples are based on the storage of the P = 6 images shown in

figure 2a. Each image is represented in terms of Gabor wavelet responses at L×L
lattice points, L = 32. At each node of the lattice, the local part of the image
is encoded in Ns × No Gabor wavelets responses, where Ns = 3 is the number
of scales and No = 6 the number of orientations. We are then dealing with a
network of N = L×L×Ns ×No units. A threshold is used for the magnitude of
these responses: each images, indexed through p = 1, ..., P , is then represented
in terms of components ξp

n ∈ {0, 1}, with n = 1, ..., N . The 4(L − 1) × Ns × No

values at the image boundary are set to zero to avoid boundary effects. As an
illustration of the resulting Gabor representation, we consider a “texture map”
that is obtained by summing the components at each node of the lattice; see
figure 2b. The image representations, i.e., patterns ξp

n are stored according to
Hebbian memory as described in [3] with pattern weights λp = (

∑
n ξp

n)−1.
Two examples are considered, characterized through

example 1: β = 0, ω1,n = 0 , example 2: β = 0, ω1,n > 0, (3)

with ω′
1,n = ω1,n. The choice β = 0 implies that there is no direct synchronizing

interaction between excitatory units. Thus, any synchronization observed in the
following is due to inhibitory effects! Example 1 is then used to confirm that such
synchronization is indeed possible, based on the dynamics given by equations 1
and 2.

The remaining parameters are chosen to be τE = τI = τ = 1, ω0,n = ω′
0,n = 0,

α = 10, γ = η = η′ = 8π. As input image, we choose the one displayed in
figure 2c, respresented in terms of corresponding thresholded Gabor responses,
ξ ı̂nput
n ∈ {0, 1}. This image in then encoded into inputs In, I ′n that suppress

activity in the network at units n, where ξ ı̂nput
n = 0. Notice,

λ4

N∑
n=1

ξ ı̂nput
n ξ4

n � 69% > λ3

N∑
n=1

ξ ı̂nput
n ξ3

n � 36% > λq

N∑
n=1

ξ ı̂nput
n ξq

n (4)
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Fig. 2: (a) The set of P = 6 stored images, showing a cup (p = 1), wagon
(p = 2), cereal box (p = 3), cactus (p = 4), another cereal box (p = 5) and a
brain (p = 6). The images are taken from the Caltech-256 image collection [5].
(b) Texture map of image p = 1 at resolution L×L, where L = 32. White pixels
illustrate lattice nodes where none of the thresholded Gabor responses is non-
vanishing, black pixels show nodes where N = NsNo = 18 are non-vanishing,
values in between are gray (here, the maximum is 17). (c) Input image used for
the examples, constructed from p = 3 and p = 4.

for q = 1, 2, 5, 6 (15%, 17%, 14%, 16%). Accordingly, a reasonable competition
among the stored images should lead to image p = 4 (the cactus) as winner.

To study the collective dynamics, we consider the activity Acactus and co-
herence Ccactus (degree of synchronization) of the set of excitatory units given
by ξinput

n = ξ4
1 = 1. The activity and coherence of units with ξinput

n = 1 but
ξ4
1 = 0 are referred to as Ac

cactus and Cc
cactus. To display the results of example

1, we also use global coherence C, describing the synchronization of all units
with ξinput

n = 1. Exact definitions of these quantities are obtained in analogy to
the definitions given in [3].

The results of example 1 are displayed in figure 3a-c. Initially, the inhibition
is diffuse (coherence of excitatory and inhibitory units are nearly identical, due
to equation 2b). The cactus component gets active, the corresponding units are
therefore becoming the generating ones, while the complement is inhibited at the
beginning. Then, however, the complement takes the rhythm of the coherent
inhibitory pool, it moves “into the shadow” of inhibition and “recovers” from
the initial suppression, so that finally a state of “global shadowing” is reached.
This is indicated through the broken line in figure 3a and the global coherence as
displayed in figure 3b. The result confirms that synchronization may be implied
through the described set of inhibitory couplings, without using synchronizing
couplings between excitatory units.

Example 2 uses the same initial values and parameters as the first exam-
ple, except for including a frequency spread resulting from shear. Due to this
frequency spread, the deactivated units are no longer able to cope with inhibi-
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Fig. 3: (a-c) Example 1, (d-f) example 2; see section 3. Comparing the texture
maps of activities Vn at t = 3τ in (c) and (f) confirms the recovery of the cactus
pattern in example 2 (black pixels now correspond to values ≥ NsNo/2, white
pixels indicate vanishing value and gray pixels indicate values in between).

tion through taking the rhythm of the inhibitory pool; see figure 3d-f. While
the generating units, i.e., the ones that fuel the inhibitory pool, may live in
its “shadow”, see figure 1a and the solid line in figure 3d, the other units are
driven by other frequencies, bringing these into conflict with inhibition (“heat”).
This conflict prevents these units from “freezing” into an active and coherent
state (corresponding to “melting” if the initial configuration is already in such
a state), see figure 1b and the broken line in figure 3d.

In summary, it can be stated that the model of equations 1 and 2 shows a
form of temporally selective inhibition, confirming the arguments of section 2.
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