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Abstract. The amount of electronic data available today as well as its
dimensionality and complexity increases rapidly in many scientific areas
including biology, (bio-)chemistry, medicine, physics and its application
fields like robotics, bioinformatics or multimedia technologies. Many of
these data sets are very complex but have also a simple inherent structure
which allows an appropriate sparse representation and modeling of such
data with less or no information loss. Advanced methods are needed to
extract these inherent but hidden information. Sparsity can be observed at
different levels: sparse representation of data points using e.g. dimension-
ality reduction for efficient data storage, sparse representation of full data
sets using e.g. prototypes to achieve compact models for lifelong learning
and sparse models of the underlying data structure using sparse encoding
techniques. One main goal is to achieve a human-interpretable represen-
tation of the essential information. Sparse representations account for the
ubiquitous problem that humans have to deal with ever increasing and
inherently unlimited information by means of limited resources such as
limited time, memory, or perception abilities. Starting with the seminal
paper of Olshausen&Field [40] researchers recognized that sparsity can be
used as a fundamental principle to arrive at very efficient information pro-
cessing models for huge and complex data such as observed e.g. in the
visual cortex. Nowadays, sparse models include diverse methods such as
relevance learning in prototype based representations, sparse coding neu-
ral gas, factor analysis methods, latent semantic indexing, sparse Bayesian
networks, relevance vector machines and other. This tutorial paper reviews
recent developments in the field.

1 Introduction

In standard tasks of every day life such as driving a car, recognizing and talk-
ing to people, listening to music, watching movies, having a nice evening in a
pub, people are capable of dealing with enormous amounts of information in
real time. Usually, they have no big problems to store and to process the rel-
evant information from complex events (such as what is the amount of money
my friend owes me after the last visit to a Belgium brewery) and they can easily
infer do’s and don’ts from previous situations (such as never lent money after
5 glasses of beer). These human capacities are quite remarkable when regard-
ing the comparably slow processing time of single neurons. Further, the large
number of neurons and their connectivity enable a huge number of different pos-
sible internal representations of information, humans have to deal with. One
key ingredient to tackle large amounts of diverse information using only limited
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resources and processing time consists in a sparse representation of informa-
tion or sparse models for information processing. This way, limited resources
are sufficient to capture all relevant information, and compressed representa-
tions can easily be integrated into further processing or data storage. Sparsity
has been observed as a key mechanism in biological systems such as the visual
cortex [40, 41], and researchers use various aspects of sparsity to arrive at effi-
cient technical systems for information processing using only limited resources.
Thereby, sparsity can aim at a sparse representation of single data points (which
can be addressed using e.g. dimensionality reduction), a full data set (which can
be represented e.g. using only a small number of prototypes), or a sparse data
generation model (like a sparse generative topographic map). The merits of
sparsity are not only an in general increased efficiency of the models measured
in terms of processing time and a speedup in processing sparse models, but also
smaller storage space, better generalization ability due to the compression of
inherent noise, and a better interpretability by humans. In general, sparsity can
help to infer the underlying information structure present in the data.

In the following contribution, we review recent technological developments
in the context of neural models which rely on sparse representations of data.

2 Measures of sparsity

One fundamental question when considering sparsity in technical systems is how
sparsity can be measured by means of an evaluation function. On the one hand,
such an objective can help to automatically evaluate the degree of sparsity of
different models (and probably pick the sparsest one), on the other hand, explicit
evaluation functions of sparsity can be used as an objective of learning algorithms
to guide the search towards sparse models. As an example, when representing
signals by means of an over-complete system of base functions, the coefficients
can be constraint using a sparsity measures as done, for example, in [28]

A variety of sparsity measures has been proposed in the literature. Assume
that model parameters are given as a vector. Popular measures to evaluate the
sparsity of a vector include

• counting the number of zero entries or entries with values smaller than ǫ,

• the (negative) Lp norm where p ∈ (0, 1),

• entropy measures and variations thereof,

• the Gini index,

and many others. For more complex models which cannot easily be represented
by simple vectors, more elaborate measures of sparsity have to be used. Even for
vectors, it is not clear which measures of sparsity are appropriate for practical
purposes. The contribution [24] formalizes a few natural conditions such as scale
invariance or monotonicity with respect to summation of constants and it shows
that many popular evaluation criteria for sparsity do not fulfill these properties.
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The Gini index constitutes one exception for which all stated properties can be
verified. Interestingly, sparsity can lead to the fact that different metrics are
identical such as e.g. solving under-constrained linear equations using the 0- or
1-norm. This is relevant e.g. for applications in blind source separation [33].

3 Sparse representation for better generalization

Often, data are very high dimensional and a direct inspection would yield invalid
results due to accumulated noise and the curse of dimensionality. A remedy is
possible if data are sparse, as it is often the case in practical applications, since
data are in fact generated by an inherently low-dimensional process and mas-
sive (probably nonlinear) correlations of the dimensions can be observed. This
sparsity can be used to reveal the inherent structure of the data. However, ap-
propriate priors or regularization measures are necessary to uncover the correct
ingredients of the data and not only the noise. Prior knowledge about the shape
of the models or their parameters is necessary at this place.

There exists a variety of general data projection methods which allow a pro-
jection of high dimensional sparse data into low dimensional space where the
data structure can be inspected [48]. In low dimensions, data are usually no
longer sparse but occupy the space according to the inherent structure. Princi-
pal component analysis (PCA) probably constitutes the most prominent linear
dimensionality reduction technique; recent developments in this context concern
the selection of a set of optimum directions in a non greedy way [8] or improve-
ments of kernel PCA methods for sparse data [3], for example. Often, standard
data sets reveal their inherent structure only if nonlinear projection is used. An
overview and comparison of recent nonlinear techniques such as locally linear
embedding, Isomap, and so forth can be found e.g. in [32]. Many dimensional-
ity reduction mechanisms require preprocessing such as a determination of the
topological neighborhood. The work [52] proposes robust methods to uncover
this topology for high dimensional sparse and noisy data.

The realization of sparsity by means of low-dimensionality constitutes a prin-
ciple which can be observed in various models where, by substituting high dimen-
sional sparse data by low-dimensional representations, the generalization ability
of the models can be improved. As an example, the approach [30] uses a low
dimensional representation of the space by means of encoder networks and inte-
grates this into a reinforcement learning task with good success. In [55] sparse
associative networks which mimic properties of the human visual system achieve
efficient and robust image recognition. Feature selection and pruning constitute
very popular methods to improve the generalization ability of standard models
such as feedforward networks, and a variety of techniques has been proposed,
e.g. [54, 49, 44]. The work [9] provides a general framework for feature extrac-
tion based on partially least squares and the approach [57] manages to underline
feature selection with formal theory, showing consistency of selection algorithms
under specific conditions. These methods can serve as a canonical background
for further models in machine learning.
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4 Sparse coding

Sparse coding tries to represent given data objects in terms of an alternative base
system such that the resulting coefficients are sparse. In consequence, the base
system must usually be over-complete and the condition of sparsity serves as a
regularizing term which makes the problem well posed. Recent developments
regarding the theory of over-complete representation can be found in the work
[45]. Sparse coding is of course also a widely used concept in signal compression.
Recent progress employing sparsity and over completeness of the basis systems
has lead to the novel concept of compressed sensing, using sparsity already during
the measurement of high dimensional sparse data, detailed in [10].

Blind source separation (BSS) refers to the problem to detect the original
base functions from a mixture signal. Thereby, arbitrary base functions are
searched for such that the signal can be derived as an arbitrary linear mixture
thereof. Since this general problem is ill-posed, the constraint that the base
functions are maximum independent is assumed, leading to classical indepen-
dent component analysis (ICA). This way, ICA can be used to detect a (usually
sparse) number of meaningful underlying sources of a given signal. Novel devel-
opments in this context have been proposed in various recent publications such
as an extension to changing distributions, an application to a priorly unknown
number of probably not dominant sources, or an integration of the biologically
more reasonable max- instead of the sum-operator [47, 51, 37, 34]. Interestingly,
a combination of ICA with topological constraints can lead to a quite robust dic-
tionary of base functions which display biological plausibility [35]. Non-negative
matrix factorization refers to the more general problem to decompose a positive
matrix corresponding to the signals into two positive forms. Thereby, additional
constraints are required such as maximum independence as in BSS or sparsity
or smoothness constraints [39, 7].

Sparse coding neural gas as proposed in the approach [28] takes the view of
Olshausen&Field. Assuming maximum sparsity, a dictionary of base functions
is learned from the data by means of local eigenvectors, superposed by a neural
gas inspired partitioning of the data space which is in analogy to the receptive
fields of the human visual system. The contribution [29] extends this approach
to more general dictionaries. A foundation of this method in terms of the neural
gas cost function can be obtained by referring to matrix learning as investigated
in [5]. Alternative ways to arrive at base functions are offered by co-occurence
analysis [15] or specific data-based optimization [12]. An overview and com-
parison of different techniques related to non-negative matrix factorization and
sparse coding is offered by the contribution [11].

A sparse representation of data provides a valuable property which also al-
lows humans to inspect high dimensional data manually. However, it is not
always clear that the respective sparsest solution carries the most interpretable
information, more distributed representations probably being closer to natural
sources. An exemplary investigation of this claim can be found in the recent
work [14].
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5 Sparse representation in clustering

Clustering partitions a data set into a collection of clusters which cover the data.
Often, the clusters can directly be inspected e.g. by their mean vector or repre-
sentative prototypes, as is the case in popular methods such as k-means, neural
gas, or the self-organizing map. Thus, clustering aims at a sparse representation
of data because data objects are linked to (sparse) cluster numbers or prototypes;
it is an extreme form of sparse coding. As a consequence, many clustering algo-
rithms integrate sparsity measures such as the class entropy, partition entropy,
or the like into the training objective.

Clustering of non-vectorial data constitutes one active topic of research.
Here, data are characterized by pairwise data dissimilarities instead of a direct
vector representation. Since a full distance matrix occupies quadratic space,
algorithms usually require at least quadratic time complexity. In case of sparse
dissimilarity matrices, a distributed computation such as present e.g. in affinity
propagation can take advantage of this sparsity leading to quite efficient compu-
tations [16]. Since data are not embedded in a real vector space, a representation
by prototypes is no longer straightforward. Exemplar based clustering methods
such as affinity propagation or median clustering represent the data set in terms
of exemplary data items [16, 21]. For sparse data, however, this choice restricts
the possible cluster assignments. Relational clustering as proposed in the ap-
proach [20] takes a different view and represents prototypes in terms of virtual
combinations of data points. Since, this way, prototypes are no longer sparse
itself, an approximation is necessary to allow easy human inspection. The contri-
bution [19] extends these ideas to the generative topographic map, a statistical
alternative to the self-organizing map.

A sparse representation of data in terms of prototypes which represent the
single clusters gives rise to an efficient universal scheme for incremental or life-
long learning: instead of the already seen data, prototypes serve as a statistics
which compresses the relevant information of previous data for future training
steps. This approach has been proposed in the context of neural gas and self-
organizing maps in the work [1]. Interestingly, it can be extended to relational
clustering mechanisms where, due to the restriction to only subparts of the full
dissimilarity matrix, a linear time clustering algorithm results because of this
reduction to sparse approximations. A similar view is taken in the work [2]:
spectral clustering is efficiently performed by a reduction to a subset and a later
extension to the full data which is then given by sparse expansions in terms
of the known items. Naturally, this scheme is not restricted to clustering but
it can be expanded to any algorithms which represent data in terms of sparse
quantities which include sufficient information for further training.

6 Sparse models for classification

Classification deals with data to be grouped according to given classes. Proto-
type based models constitute classical approaches to arrive at a sparse classifi-
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cation by attaching class labels to the prototypes. Learning vector quantization
(LVQ) is probably one of the most popular algorithms in this area. Interest-
ingly, the sparsity offered by the prototypes can be accompanied with additional
mechanisms to enforce sparsity in the data e.g. by relevance learning (GRLVQ)
[22]. Recent extensions of GRLVQ learning schemes include the incorporation of
adaptive overall structure parameters such as the number of prototypes [26], a
more subtle adaptation of the metric if known structural components are present
[59], or more sophisticated choices of the metric to better adapt to the respective
application scenario at hand [38].

Naturally, sparsity constraints can also be integrated into alternative classi-
fiers such as simple linear classification schemes. In this context, sparsity can
serve as vehicle to efficiently extend the classification schemes to very large data
sets, such as proposed in the approach [6] for linear classifiers by means of an
appropriate approximation of the likelihood function.

7 Sparse regression models

Regression models extend classification such that arbitrary real vectors can be
used as output instead of discrete numbers only. A majority of classical machine
learning models has been proposed for general regression tasks including feedfor-
ward networks, radial basis function networks, support vector machines, and the
like. Since Vapnik’s seminal work on structural risk minimization, regularization
is included in popular regression models and often naturally yields sparse mod-
els. The support vector machine (SVM) which expands the solution in terms
of the support vectors, constitutes a prime example. However, with increasing
data set size, this number usually increases such that a representation of the
solution by a priorly limited number of support vectors constitutes an active
area of research in the context of sparsity [23]. The choice of the loss function
can serve as an alternative vehicle to arrive at sparser solutions for SVM [56].
Another bottleneck of SVM training and kernel machines in general is the design
and computation of the kernel. Approximate computation of the Gram matrix
can be based on popular methods such as the Nyström approximation, while
several methods for optimum sparse kernel design have recently been presented
[18, 46] including optimization of kernel parameters using LASSO, for example.

Unlike prototype based methods, support vectors do not provide representa-
tive examples of the data set, rather elements at the boundaries are picked. The
relevance vector machine (RVM) combines the benefits of the SVM such as an
excellent generalization ability because of margin optimization with an intuitive
representation of data in terms of representative examples. This can be further
extended such that relevance vectors can lie at general positions in the feature
space [17].

Interestingly, it is possible to accompany sparse models with theoretical va-
lidity guarantees such as presented in the approach [58] for regularized least
squares regression under noise.

Dedicated numerical procedures have been proposed in the context of sparse
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regression models. These concern different aspects such as an efficient optimiza-
tion of the overall objective under sparsity constraints [13], an efficient compu-
tation of the Gram matrix for data streams or sparse feature spaces [42], effi-
cient training of sparse kernel machines based on attractor dynamics, or general
methods to induce sparsity into popular regression models [31] . Altogether, a
quite powerful repertoire of state-of-the-art technology is available to infer sparse
models from the data.

8 Conclusions

As reviewed in this overview paper, sparsity plays an essential role in quite di-
verse areas of machine learning, ranging from data representation to clustering,
classification, and regression tasks. In these areas, powerful tools have been de-
signed which are partially accompanied by interesting mathematical guarantees
on the one hand, and successful real life applications, on the other hand. This
includes classification and regression for images based on sparse representation
[53], microarray data analysis using sparse component analysis [43], an inference
of cognitively relevant visual neighborhoods of objects by sparse coding [36],
blind source separation for audio data [25], applications to SAR images [50], or
handwritten digit recognition [27], or the inference of extremely sparse time se-
ries prediction models [4], to name just a few. However, when enforcing sparsity,
care has to be taken such that no relevant information is lost during the process
(sparsity in a pub should not lead to sparse beer, for example).
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