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Abstract. We present an extension of the Exploratory Observation Ma-
chine (XOM) for structure-preserving dimensionality reduction. Based on
minimizing the Kullback-Leibler divergence of neighborhood functions in
data and image spaces, this Neighbor Embedding XOM (NE-XOM) cre-
ates a link between fast sequential online learning known from topology-
preserving mappings and principled direct divergence optimization ap-
proaches. We quantitatively evaluate our method on real world data using
multiple embedding quality measures. In this comparison, NE-XOM per-
forms as a competitive trade-off between high embedding quality and low
computational expense, which motivates its further use in real-world set-
tings throughout science and engineering.

1 Introduction
Various dimension reduction techniques have been introduced based on different
properties of the original data to be preserved. The spectrum ranges from linear
projections of original data, such as in Principal Component Analysis (PCA)
or classical Multidimensional Scaling (MDS) to a wide range of locally linear
and non-linear approaches, such as Isomap, Locally Linear Embedding (LLE)
[1], Local Linear Coordination (LLC), or charting. For a comprehensive recent
review on nonlinear dimensionality reduction methods, we refer to [2].

Recently, a novel approach for topology-preserving learning has attracted
attention for advanced data processing. The Exploratory Observation Ma-
chine (XOM) [3] computes graphical representations of high-dimensional ob-
servations by a strategy of self-organized model adaptation. Although simple
and computationally efficient, XOM enjoys a surprising flexibility to simulta-
neously contribute to several different domains of advanced machine learning,
scientific data analysis, and visualization, such as structure-preserving dimen-
sionality reduction and data clustering [3]. Among a large number of different
distance measures even including non-metric distances, it has been proposed in
[4] to apply advanced divergence measures such as the Kullback-Leibler diver-
gence and the Itakura-Saito distance within the XOM framework. This idea is
in line with recent approaches to introduce alternative dissimilarity measures
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for data processing, such as Sobolev-distances or kernel based dissimilarity mea-
sures [5, 2], approaches based on information theory using divergences for data
processing, e.g. clustering [6, 7], dimension reduction with MDS, or Stochas-
tic Neighbor Embedding (SNE)[8]. In this contribution, we derive a variant
of XOM, called Neighbor Embedding XOM (NE-XOM) that builds upon the
generalized Kullback-Leibler Divergence as a dissimilarity measure between the
neighborhood distributions of high-dimensional data and low-dimensional image
vectors. We will describe the XOM algorithm and its NE-XOM extension in
section 2, discuss the embedding results on two benchmark data sets in section
3, and conclude in section 4.

2 The Exploratory Observation Machine (XOM)
We briefly review the Exploratory Observation Machine (XOM) algorithm. For
details, we refer to the literature [9]. XOM maps a finite number of data points
x

i ∈ R
D in observation space X to low dimensional data points y

i ∈ R
d in

the embedding space E . The assignment is x
i → y

i and typically d � D, e. g.
d = 2 for visualization purpose. The embedding space E is priorly equipped with
a structure, given by a number of sampling vectors s ∈ Rd, which corresponds
to the final structure according to which data are represented. Essentially, this
is a generalization of the prototypes as included in the Self Organizing Map
(SOM). Reasonable choices for the sampling vectors s are: the location on a
regular lattice structure in Rd just as in SOM, the location at discrete positions
R

d to represent a finite number of class centers, the sampling according to a
mixture of Gaussians centered in Rd to represent a finite number of clusters,
or the uniform sampling in a region of Rd to indicate that the visualization of
the data should occupy the full projection space. Unlike SOM, XOM does not
project the sampling vectors s

j (generalization of prototypes) to the data space,
rather, it projects the data to the embedding space. Nevertheless, the sampling
vectors define receptive fields by a decomposition into points mapped closest to
the sampling vectors

Rj = {xi | dE(sj ,yi) is minimum for s
j} (1)

where dE refers to the distance in the embedding space. An approximate back
projection of the sampling vector can be defined as the best match input vector

Ψ(s) = x
i where dE(s,yi) is minimum. (2)

The images y
i are initialized randomly and adapted iteratively during the train-

ing triggered by the structure of the embedding space. All y
i are adapted into

the direction of the current s
j according to the distances between the best match

input Ψ(sj) and their counterparts x
i in the observation space X . For a given

sampling vector s
j the adaptation rule is given by:

y
i := y

i − ηhσ(dX (Ψ(sj),xi))
∂dE(sj ,yi)

∂yi
, (3)

where η > 0 denotes the learning rate, dX refers to the distance in the data space,
e. g. the Euclidean distance and hσ(t) = exp(−t/2σ2) with σ > 0 defines the
neighborhood cooperation. In this way the projections y are arranged around
the priorly chosen structure elements s such that image vectors are close to the

88

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



same sampling vector if their corresponding data points x are neighbored in
the data space. As the SOM, XOM in its original form does not possess a cost
function. However as proposed in [9], a variation following Heskes [10] by setting
the best match input data vector to the average

Ψ(s) = x
i where

∑

j

hσ(dX (xi,xj))dE(s,yj) is minimum (4)

leads to the cost function:

EXOM ∼

∫

∑

i

δΨ(s),xi ·

N
∑

j=1

hσ(dX (xi,xj)) · dE(s,yj) p(s)ds , (5)

where δ denotes the Kronecker delta.

2.1 XOM with generalized Kullback-Leibler Divergence

A recent and very powerful proposal for data visualization is SNE. It aims in
finding projections such that the pairwise distribution of points in the data and
embedding space are approximately the same measured by the Kullback-Leibler
(KL) divergence. SNE has the drawback that, unlike in SOM or XOM, no
prior structure of the projection space is involved, e. g. it is not intended to
introduce a structuring component in the form of a lattice of sampling vectors.
Like many other visualization techniques, SNE has a computational and memory
complexity that is quadratic in the number of data points. The complexity of
XOM can be easily controlled by the structure definition and is linear with the
number of points and the number of sampling vectors. We propose to combine
the ideas of XOM with the cost function as proposed by SNE.

Based on the cost function (5) we are able to define new learning rules for
the XOM algorithm based on the generalized KL divergence for not normalized
positive measures p and q:

DGKL(p || q) =

∫
[

p(x) log

(

p(x)

q(x)

)]

dx −

∫

[p(x) − q(x)] dx . (6)

In contrast to [11], however, we do not use the KL divergence as a distance mea-
sure within the original or the embedding space, but as a dissimilarity measure
between the two spaces. We define the cooperativity functions hσ(dX (xi,xj))
and gγ(dE(s,yj)) in the same way as shown in Sec. 2 to model the neighbor-
hoods in the original space and embedding space. Based on these settings, we
define a novel cost function using the divergence (6):

EGKL ∼

∫

∑

i

δΨGKL(s),xi

∑

j

[

hσ(dX (xi,xj)) ln

(

hσ(dX (xi,xj))

gγ(dE(s,yj))

)

− hσ(dX (xi,xj)) + gγ(dE(s,yj))
]

p(s)ds , (7)

where the best match data point for s is defined as:

ΨGKL(s) =x
i such that

∑

j

[

hσ(dX (xi,xj)) ln

(

hσ(dX (xi,xj))

gγ(dE(s,yj))

)

− hσ(dX (xi,xj)) + gγ(dE(s,yj))
]

is minimum. (8)

This leads to the online learning update rule for a given sampling vector s:

y
k = y

k −
η

γ2

[

hσ(dX (ΨGKL(s),xk)) − gγ(dE(s,yk))
] ∂dE(s,yk)

∂yk
. (9)

While the original XOM approach bases on attraction forces only (see Eq. (3)),
the prototype update in Eq. (9) includes repulsion as well. The XOM update
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emphasizes attraction and predominantly optimizes ‘continuity’, such that small
distances in X lead to small distances in E . The additional repulsive term in
Eq. (9) is intended to facilitate optimization of ‘trustworthiness’, such that big
distances in X enforce big distances in E .

It is also possible to use this algorithm without a defined structure, one could
simply change the definition of the sampling vectors, as inspired by [12, 13],
in such a way that they are selected in close proximity to the image vector
positions. Therefore, instead of choosing a sampling vector randomly out of a
given distribution, we run through the images y and choose a sampling vector
s

j = ỹ
j drawn from a distribution centered around the actual images y

j , e.g.
from a Gaussian, a localized uniform, or a t-distribution. The algorithm, in the
following called Neighbor Embedding XOM (NE-XOM) thus changes to: Step
1 - Compute pairwise distances dX (xi,xj). Step 2 - Randomly initialize ‘image
vectors’ y

i ∈ E , i = 1, . . . , N corresponding to each input vector x
i. Step 3

- Run through the randomized set y, where one complete run is referred to as
one epoch. For every y

j , find a sampling vector drawn from a low variance
distribution centered around y

j . Subsequently, perform the update of all image
vectors y following Eq. (9). Another image vector is chosen and the procedure
is repeated until a maximal number of epochs is reached. The final positions of
the vectors y represent the output of the algorithm.

3 Experiments
In this section, we present results of NE-XOM on a real-world benchmark data
set and quantitatively compare several widely used embedding techniques using
multiple quantitative embedding quality measures as described in the literature,
namely trustworthiness/continuity [14], Sammon’s stress [15], Spearman’s ρ [16],
and Pearson’s r correlation.

3.1 Wine

The wine data available at [17] contains 178 samples in 13 dimensions divided
in three classes. As proposed in [18] we first transformed the data to have zero
mean and unit variance features. NE-XOM was trained for tmax = 50 epochs

with a learning rate annealing scheme η(t) = η1 ·
(

− exp
(

log
(

η1

η2

)

/tmax

)

· t
)

with η1 = 0.1 and η2 = 0.001. The cooperativity functions hσ and gγ were
chosen as Gaussians and their variance was annealed using the same scheme as
for the learning rate with a local σ1 value equal to the 80% percentile of the
squared Euclidean distances for every point to all other points, σ2 = 0.5 (for all
points), γ1 = 3 and γ2 = 0.05. The prototypes were initialized with PCA in two
dimensions. Various embedding quality measures can be found in table 1.

3.2 USPS digits

The USPSdataset consists of images of hand written digits of a resolution of
16×16 pixel. We normalized the data to have zero mean and unit variance
features, using the first 800 observations per class for the digits ∈ [0, 1, 2, 3, 4],
resulting in 4000 samples. The embedding obtained from NE-XOM learning
with 50 epochs, globally annealed σ for all data points and annealed γ (same
annealing scheme as used in wine data) is shown in Fig. 1. The parameters
were chosen: η1 = 0.5, η2 = 0.05, γ1 = 0.5, γ2 = 0.1, σ1 = 25 and σ2 = 4. The
prototypes were initialized using 2D PCA. Values for several quality measures for
different methods are shown in Fig. 2 and Table 1. Interestingly, the embedding

90

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



Fig. 1: Visualization of the first five digits out of the USPS data set by NE-XOM.
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Fig. 2: Trustworthiness and continuity on four digits of the USPS data set.

keeps apart different angles and thickness of handwriting, especially the ones
separate in right aslope, left aslope, straight and bold font.

As can be concluded from the results in both data sets, none of the compared
algorithms excels with regard to all quality measures. NE-XOM outperforms
slightly with regard to Spearman’s ρ and Pearson’s r, SNE slightly in terms of
trustworthiness and continuity. Interestingly, the embedding obtained from
the NE-XOM show better continuity/trustworthiness values than widely used
methods like Isomap, LLE, or Sammon’s mapping. The continuity of LLE is
better on this USPS data set, but its visualization is poor, because all points
are collapsed on a line. Sammon’s stress is only outperformed by Sammon’s
mapping itself in this data set, and with Spearman’s ρ and Pearson’s r, the best
values can be obtained with NE-XOM compared to traditional methods.

4 Conclusions and Outlook
In this contribution, we have introduced an extension of the Exploratory Obser-
vation Machine (XOM) for structure-preserving dimensionality reduction. Based
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Wine USPS
Method Sam. St. Sp. rho Pear. r Sam. St. Sp. rho Pear. r

NE-XOM 0.07 0.89 0.88 0.14 0.78 0.76
SNE 0.12 0.78 0.74 0.16 0.52 0.54
Sammon 0.07 0.87 0.86 0.12 0.72 0.72
LLE 0.17 0.66 0.64 0.27 0.29 0.35
Isomap 0.18 0.80 0.77 0.43 0.29 0.26

Table 1: Summary for the benchmark data sets.

on minimizing the Kullback-Leibler divergence of neighborhood functions in data
and image spaces, NE-XOM creates a conceptual link between fast sequential on-
line learning known from topology-preserving mappings and principled direct di-
vergence optimization approaches, such as SNE. Quantitative comparative eval-
uation on benchmark data using multiple embedding quality measures identifies
NE-XOM as a competitive trade-off between high embedding quality and low
computational expense, which motivates its extended use in real-world settings
throughout science and engineering. Future work will be addressing the fine-
tuning of attractive/repulsive forces and aim at automated parameter setting.
We will investigate the influence of the prior structure definition and determine
the results of embeddings obtained in linear complexity. Furthermore, we will
extend the algorithm to utilize different distributions, e.g. the t-distribution as
motivated by tSNE [19]. Finally, we will use different divergence measures to
derive alternative NE-XOM learning rules and cost functions.
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