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Abstract. The generative topographic map (GTM) provides a flexible
statistical model for unsupervised data inspection and topographic map-
ping. However, it shares the property of most unsupervised tools that noise
in the data cannot be recognized as such and, in consequence, is visualized
in the map. The framework of relevance learning or learning metrics as
introduced in [4, 6] offers an elegant way to shape the metric according to
auxiliary information at hand such that only those aspects are displayed
in distance-based approaches which are relevant for a given classification
task. Here we introduce the concept of relevance learning into GTM such
that the metric is shaped according to auxiliary class labels. Relying on
the prototype-based nature of GTM, several efficient realizations of this
paradigm are developed and compared on a couple of benchmarks.

1 Introduction

The GTM has been introduced as a generative statistical model corresponding
to the classical self-organizing map for unsupervised data inspection and to-
pographic mapping [2]. An explicit statistical model has the benefit of great
flexibility and easy adaptability to complex situations by means of statistical
assumptions which are fitted to the situation at hand. Like standard unsuper-
vised machine learning and data inspection methods, however, GTM shares the
‘garbage in - garbage out’ problem: the information inherent in the data is dis-
played independent of the specific user intention. Hence, if ‘garbage’ is present
in the data, this noise is presented to the user since the statistical model has no
way to identify the noise as such.

To partially prevent this fundamental problem of unsupervised data inspec-
tion methods, the principle of learning metrics has been introduced into the
self-organizing map and alternative data projection schemes in [6]. Thereby,
auxiliary information such as class labels are integrated and only those aspects
of the data are displayed which carry information for the given auxiliary data
at hand. This way, the user can control the aspects which are displayed in the
model by providing appropriate information. From a technological point of view,
the integration of auxiliary information is realized by means of an adaptation of
the metric which determines the map. The Riemannian metric is adapted such
that the aspects relevant for the auxiliary information determine the distance
computation. Since the computation of a full Riemannian metric leads to rather
complex path integrals, the methods as presented in [6, 5] rely on different ap-
proximations of the computation. In contrast, metric adaptation in supervised
prototype based methods as presented e.g. in [4, 7] introduces global distances
or distances attached to the receptive fields of prototypes. This way, a very
efficient metric computation takes place and metric parameters can be adapted
according to the cost function of the given supervised learning scheme.

387

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



In this contribution, we extend GTM to the principle of learning metrics
by combining the technique of relevance learning as introduced in supervised
prototype-based classification schemes and the prototype-based unsupervised
representation of data as provided by GTM. We propose different ways to adapt
the relevance terms which rely on different cost functions connected to prototype-
based classification of data. Unlike [3], where a separate supervised model is
trained to arrive at appropriate metrics for unsupervised data visualization, we
can directly integrate the metric adaptation step into GTM due to the prototype-
based nature of GTM. We test the ability of the model to visualize and cluster
given data sets on a couple of benchmarks. It turns out that, this way, an efficient
and flexible discriminative data mining and visualization technique arises.

2 The generative topographic map

The GTM as introduced in [2] models data x ∈ R
D by means of a mixture

of Gaussians which is induced by a lattice of points w in a low dimensional
latent space which can be used for visualization. The lattice points are mapped
via a function w �→ t = y(w,W) to the data space, where the function is
parameterized by W; one can, for example, pick a generalized linear regression
model based on base functions such as Gaussians. Every latent point induces a
Gaussian

p(x|w,W, β) =
(

β

2π

)D/2

exp
(
−β

2
‖x − y(w,W)‖2

)
(1)

with bandwidth β, which give the data distribution as mixture of K modes

p(x|W, β) =
K∑

k=1

p(wk)p(x|wk,W, β)

where, usually, p(wk) is taken as uniform distribution of the prototypes. Train-
ing of GTM optimizes the data log-likelihood

ln

(
N∏

n=1

(
K∑

k=1

p(wk)p(xn|wk,W, β)

))

by means of an EM approach with respect to the parameters W and β. In the E
step, the responsibility of mixture component k for data point n is determined
as

rkn = p(wk|xn,W, β) =
p(xn|wk,W, β)p(wk)∑
k′ p(xn|wk′ ,W, β)p(wk′ )

(2)

while an algebraic expression for W and β can be derived in the M step [2].

3 Relevance learning

The principle of relevance learning has been introduced in [4] as a particularly
simple and efficient method to adapt the metric of prototype based classifiers
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init

repeat

E-step: determine the responsibilities rkn
based on ‖x− w‖2

λ
M-step: determine W and β as in GTM

label prototypes

adapt λ by stochastic gradient descent on E(λ)
normalize λ

Table 1: Integration of relevance learning into GTM

according to the given situation at hand. It takes into account a relevance scheme
of the data dimensionalities by substituting the euclidean metric by the weighted
form

‖x− w‖2
λ =

D∑
d=1

λ2
d(xd − wd)2 . (3)

In [4], the euclidean metric is substituted by the more general form (3) and,
parallel to prototype updates, the metric parameters λ are adapted according to
the given classification task. Here, we introduce the same principle into GTM.

Assume that data point x is equipped with label information y which is
element of a finite set of different labels. Prototypes of a given GTM can be
labeled posteriorly based on this information, i.e. prototype tk = y(wk,W) is
labelled

c(tk) = arg max
c

⎛
⎝ ∑

n|yn=c

rkn

⎞
⎠ (4)

We can introduce relevance learning into GTM by substituting the euclidean
metric in the Gaussian bells (1) by the more general diagonal metric (3) which
includes relevance terms. Analogous to [2], it can be seen that optimization of
the parameters W and β of GTM can be done the same way as beforehand,
whereby the diagonal metric has to be used when computing the responsibilities
(2). The metric parameters λ should be adapted such that the label information
is taken into account. Below, we will introduce different objective functions
which are motivated by the classification induced by the prototype based GTM
with posterior labeling (4). Note that, further, it is advisable to normalize the
parameters ‖λ‖2 = 1 to prevent degeneration to the trivial solution λ = 0.
The principled integration of relevance learning into GTM is depicted in Tab. 1.
Thereby, usually one epoch is performed to adapt the relevance terms by means
of a stochastic gradient descent of an appropriate cost function E(λ). Now, we
discuss concrete cost functions E(λ) for the relevance terms in more detail.

Generalized Relevance GTM (GRGTM)

The cost function is taken from generalized relevance learning vector quantiza-
tion, which can be interpreted as the goal to maximize the hypothesis margin of
a prototype based classification scheme such as LVQ [4, 7]. The cost function is
given as
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data number of prototypes number of base functions
Landsat 10 × 10 14 × 14
Phoneme 10 × 10 5 × 5
Letter 30 × 30 30 × 30

Table 2: Parameters used for training

E(λ) =
∑

n

sgd
(‖xn − t+‖2

λ − ‖xn − t−‖2
λ

‖xn − t+‖2
λ + ‖xn − t−‖2

λ

)

where t+ is the closest prototype in the data space with the same label as xn

and t− is the closest prototype with a different label.

Robust Soft GTM (RSGTM)

In analogy to soft robust LVQ as introduced in [8], the goal is to optimize the
ratio of the probability of correct classification to the overall probability:

E(λ) =
∑

n

log

(∑
k|c(tk)=yn p(wk)p(xn|wk,W, β)

p(xn|W, β)

)

Entropy GTM (EGTM)

The goal is to obtain prototypes such that labels of points assigned to these
prototypes coincide as much as possible. This can be measured by means of the
entropy of the label distribution assigned to the prototypes:

E(λ) = −
∑

k

∑
c

∑
n|yn=c p(xn|wk,W, β)∑

n p(xn|wk,W, β)
log

∑
n|yn=c p(xn|wk,W, β)∑

n p(xn|wk,W, β)

In all three cases, update rules can be derived from E(λ) by taking the derivative
with respect to λ. This way, we obtain three different update schemes for the
relevance terms, which are based on different fundamental principles connected
to the classification induced by GTM: margin maximization, optimization of the
probability ratio of correct classification, and optimization of the class entropy
attached to the prototypes, respectively.

4 Experiments

We test the efficiency of relevance learning in GTM on three benchmark data
sets as described in [6]: Landsat Satellite data with 36 dimensions, 6 classes,
and 6435 samples, Letter Recognition data with 16 dimensions, 26 classes, and
20000 samples, and Phoneme data with 20 dimensions, 13 classes, and 3656
samples. GTM is initialized using the first two principal components. The map-
ping y(w,W) is induced by generalized linear regression based on Gaussian base
functions. The learning rate of the gradient descent for λ has been optimized for
the data and is chosen in the range of 10−6 to 10−2. The number of epochs is
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GTM GRGTM SRGTM EGTM Graph

Landsat
accuracy 85.92 (0.2) 86.33 (0.15) 86.18 (0.23) 85.14 (0.46) 88.95
top.product -0.0087 -0.0080 -0.0101 0.0009
random -0.0355 -0.0589 -0.0653 -0.0174

Phoneme
accuracy 40.15 (0.32) 76.69 (1.29) 76.62 (2.24) 83.44 (1.03) 90.77
top.product -0.0391 -0.0098 -0.0365 -0.0131
random -0.0953 -0.0307 -0.1093 -0.0783

Letter
accuracy 67.15 77.92 78.45 66.23 59.26
top.product -0.0658 -0.0684 -0.0772 -0.0693
random -0.1585 -0.1616 -0.1629 -0.1592

Table 3: Results obtained with GTM and relevance learning, the standard de-
viation for the accuracy is displayed in parenthesis. The topographic product is
evaluated on the trained map and a random permutation, for comparison. Since
random permutation disrupts the topological ordering, the number should be a
magnitude larger in size than the evaluation of the topographic product on a
topologically sorted map. The column ‘Graph’ refers to the result as reported
in [6] for Sammon’s map with full graph-based Riemannian metric adapted to
the given labeling.

chosen as 100. The number of prototypes and base functions has been optimized
on the data and is shown in Tab. 2. We report the results of a repeated ten-fold
cross-validation, whereby we evaluate the models by means of the classification
error, to estimate the capability of the models of taking auxiliary label infor-
mation into account, and by means of the topographic product as introduced
in [1] to judge the capability of the models of faithful topological representation
of the data. Since the topographic product is sensitive to the number of pro-
totypes used for the models, we always report the average topographic product
of randomly perturbed maps in comparison; values close to 0 indicate a faithful
topographic ordering of the map. The results obtained this way are depicted
in Tab. 3. For comparison, we report the results obtained by GTM without
relevance learning, and the classification accuracy which can be obtained by the
more demanding principle of (full graph based) learning metrics in combination
with Sammon’s mapping as reported in [6].

In all cases but one the integration of label information in terms of relevance
learning greatly improves the classification accuracy of GTM, while not dete-
riorating the visualization quality of the map as measured by the topographic
product. Interestingly, although the method is restricted to a very simple di-
agonal metric, the accuracy is comparable to the accuracy obtained by a full
Riemannian metric as investigated in [6]. Apart from an improved efficiency
(the algorithm being O(N) only, N denoting the number of data points), global
relevance terms have the benefit that the result can be interpreted directly, the
size of the components of λ corresponding to the relevance of the respective di-
mensions, see Fig. 1 for the relevance profiles as obtained for the Letter data set.
Interestingly, the methods widely agree on the fact that the dimensions around
8 are of particular importance for this task, although relevance adaptation relies
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Fig. 1: Relevance profile of GRGTM (left), RSGTM (middle), EGTM (right).

on three different principles for these adaptation rules.

5 Discussion

In this contribution, a method has been proposed to integrate auxiliary informa-
tion in terms of relevance updates into GTM; the benefit of this approach has
been demonstrated on three benchmarks. As [6], the work is based on adaptive
metrics to incorporate auxiliary information into the model. Unlike [6], how-
ever, the proposed method relies on the prototype-based nature of GTM and
transfers the relevance update scheme of supervised learning schemes such as
[4, 7] to this setting, resulting in an efficient and interpretable discriminative
topological mapping. Obviously, the method could be further extended to even
more flexible metrics such as individual matrices attached to the prototypes, as
proposed in the frame of supervised learning in [7]. The investigation of these
possibilities will be the subject of future work.
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