
Efficient online learning of a non-negative sparse

autoencoder

Andre Lemme, R. Felix Reinhart and Jochen J. Steil

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University
{alemme, freinhar, jsteil}@CoR-Lab.Uni-Bielefeld.de

Abstract. We introduce an efficient online learning mechanism for non-
negative sparse coding in autoencoder neural networks. In this paper we
compare the novel method to the batch algorithm non-negative matrix
factorization with and without sparseness constraint. We show that the
efficient autoencoder yields to better sparseness and lower reconstruction
errors than the batch algorithms on the MNIST benchmark dataset.

1 Introduction

Unsupervised learning techniques that can find filters for relevant parts in images
are particularly important for visual object classification [1]. Lee proposed a non-
negative matrix factorization (NMF) in [2] to produce a non-negative encoding
of input images by combining a linear matrix factorization approach with non-
negativity constraints. Hoyer introduced an additional sparseness constraint to
the factorization process in order to increase the sparseness of the produced
encoding [3, 4]. Sparse codes enhance the probability of linear separability,
a crucial feature for object classification [5]. The main drawbacks of matrix
factorization approaches are high computational costs and the fact that the
costly matrix factorization has to be redone each time new images are perceived.
This is also true for the sort-of-online NMF introduced in [6]. Therefore, NMF is
not suited for problems that require processing in real-time and life-long learning.
A non-negative and online version of the PCA was introduced recently [7]. This
approach addresses the problem of non-negativity and computational efficiency.
However, PCA is intrinsically a non-sparse method.

We propose a modified autoencoder model that encodes input images in a
non-negative and sparse network state. We use logistic activation functions in
the hidden layer in order to map neural activities to strictly positive outputs.
Sparseness of the representation is achieved by an unsupervised self-adaptation
rule, which adapts the non-linear activation functions based on the principle of
intrinsic plasticity [8]. Non-negativity of connection weights is enforced by a
novel, asymmetric regularization approach that punishes negative weights more
than positive ones. Both online learning rules are combined, use only local
information, and are very efficient. We compare the reconstruction performance
as well as the generated codes of the introduced model to the non-negative
offline algorithms NMF and non-negative matrix factorization with sparseness
constraints (NMFSC) on the MNIST benchmark data set [9]. The efficient online
implementation outperforms the offline algorithms with respect to reconstruction
errors and sparseness of filters as well as code vectors.

1

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

(a) Original

�
�
�
�

�

�
�
�

�

�

�

�
�
�
�
�

�

�
�
�

�

�

�

�

�
�
�
�

�

�

�

�

� �
W�W

h

x x̂

(b) Network (c) Reconstruction

Fig. 1: Autoencoder network with input image x (left) and reconstructed image
x̂ (right). W ≡ WT is the tied weight matrix and h the hidden network state.

2 Non-negative sparse autoencoder network (NNSAE)

We modify an autoencoder network in order to obtain non-negative and sparse
encodings with only positive network weights from non-negative input data.
The network architecture is shown in Fig. 1. We denote the input image by
x ∈ �n and the network reconstruction by x̂ = WT f(Wx), where W ∈ �m×n

is the weight matrix and f(·) are parameterized activation functions fi(gi) =
(1 + exp(−aigi − bi))−1 ∈ [0, 1] with slopes ai and biases bi that are applied
component-wise to the neural activities g = Wx (g ∈ �m). Non-negative code
vectors are already assured by the logistic activation functions fi(gi).
Learning to reconstruct: Learning of the autoencoder is based on minimiz-
ing the reconstruction error E = 1

N

∑N
i=1 ||xi − x̂i||2 on the training set. Note

that W ≡ WT is the same matrix for encoding and decoding, i.e. the autoen-
coder has tied weights [10, 11], which reduces the number of parameters to be
adapted. Then, learning boils down to a simple error correction rule for all
training examples x

w̃ij = wij + η (xi − x̂i)hj , (1)
Δwij = η (xi − x̂i)hj + d(w̃ij), (2)

where wij is the connection from hidden neuron j to the output neuron i and
hj is the activation of neuron j. The decay function d(w̃ij) will be discussed
in the next section. We use an adaptive learning rate η = η̃ (||h||2 + ε)−1 that
scales the gradient step size η̃ by the inverse network activity and is similar to
backpropagation-decorrelation learning for reservoir networks [12].
Asymmetric decay enforces non-negative network parameters: In or-
der to enforce non-negative weights, we introduce an asymmetric regularization
approach. Typically, a Gaussian prior for the network weights is assumed, which
is expressed by a quadratic cost term λ||W||2 added to the error function E.
Using gradient descent, the Gaussian prior results in a so called decay term

2

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

d(wij)=−λwij . We assume a virtually deformed Gaussian prior that is skewed
with respect to the sign of the new computed weight w̃ij (eq. 1). Gradient
descent then yields the following asymmetric, piecewise linear decay function:

d(w̃ij) =

{
−α w̃ij if w̃ij < 0
−β w̃ij else

(3)

The main advantage of (3) is the parameterized decay behavior depending on
the sign of the weight: it is possible to allow a certain degree of negative weights
(0 ≤ α � 1) or to prohibit negative weights completely (α = 1). The decay
function (3) falls back to the case of a symmetric prior for α=β.
Adaptation of non-linearities achieves sparse codes: In the context of
the non-negative autoencoder, it is crucial to adapt the activation functions to
the strictly non-negative input distribution caused by the non-negative weight
and data matrix. We therefore apply an efficient, unsupervised and local learn-
ing scheme to the parameterized activation functions fi(gi) that is known as
intrinsic plasticity (IP) [8]. In addition, IP enhances the sparseness of the input
representation in the hidden layer [13]. For more details about IP see [8, 13].

We use a small learning rate ηIP = 0.0001 throughout the experiments and
initialize the parameters of the activation functions a= 1 and b =−3 in order
to accelerate convergence. IP provides a parameter to adjust the desired mean
network activation, which we set to μ = 0.2 corresponding to a sparse network
state. In addition, we use a constant bias decay Δb = ΔbIP −0.00001 to further
increase the sparseness of the encoding.

3 Encoding and decoding of handwritten digits

We analyze the behavior of the non-negative sparse autoencoder (NNSAE) and
compare the new NNSAE approach to the batch algorithms NMF and NMFSC
on a benchmark data set.
Dataset and network training: The MNIST data set is commonly used
to benchmark image reconstruction and classification methods [14]. For the
following experiments the “MNIST-basic” set [9] is used, which comprises 12000
trainings and 50000 test images of handwritten digits from 0 to 9 in a centered
and normalized 28 × 28 pixel format. We subdivide the training set into 10000
samples for learning and use the remaining 2000 examples as validation set.
Some example digits from the test set are shown in the top row of Fig. 2.

We use an autoencoder with 784 input neurons and 100 hidden neurons to
encode and decode the input images. The weight matrix is initialized randomly
according to a uniform distribution in [0.95, 1.05]. We set η̃=0.01 and ε=0.002
in (1). Each autoencoder is trained for 100 epochs, where the whole training set
is presented to the model in each epoch. To account for the random network
initialization, we present all results averaged over 10 trials.
Impact of asymmetric decay: We first investigate the impact of the asym-
metric decay function (3). The following variates are calculated to quantify the

3

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

α=0 α=0.1 α=0.2 α=0.3 α=1.0
MSE 0.0107 0.0149 0.0149 0.0150 0.0151
STD · 10−4 0.5966 0.4079 0.7153 0.7143 0.6893
s(H) 0.3954 0.3465 0.3474 0.3460 0.3512
s(W) 0.5334 0.9379 0.9363 0.9397 0.9322

Tab. 1: MSE with standard deviation on the test set and sparseness of the
encodings H and network weights W depending on asymmetric decay rate α.

model properties in dependence on α: (a) Pixelwise mean square error

MSE =
1

MN

N∑
i=1

M∑
j=1

(xi
j − x̂i

j)
2 (4)

of the reconstructions, where M is the dimension of the data and N the number
of samples. (b) Average sparseness of the code matrix H and filters W, where
we estimate the sparseness of a vector v ∈ �n by

s(v) = (
√

n − (Σn
i=1|vi|)/

√
Σn

i=1v
2
i))(

√
n − 1)−1. (5)

This function was introduced by Hoyer [4] and rates the energy of a vector v with
values between zero and one, where sparse vectors v are mapped to s(v) � 0.

Tab. 1 shows the MSE and the average sparseness of hidden states as well
as connection weights depending on α while β ≡ 0. The results in Tab. 1 for
the case without decay (α = 0) show that a certain amount of negative weights
seems to be useful in terms of the reconstruction error. However, if we commit
to non-negativity, it does not matter whether there is just a small set of negative
(α = 0.1) or only positive entries (α = 1) in the weight matrix. This indicates
that a rather moderate non-negativity constraint causes the weight dynamics and
the final solution to change completely. We therefore set α=1 in the following
experiments and focus on strictly non-negative filters wi ∈ �n.

4 Online NNSAE versus offline NMF and NMFSC

The batch algorithms NMF and NMFSC solve the equation X = WH starting
from the data matrix X and initial filters W and code matrix H. Then, iterative
updates of the code and weight matrix are conducted in order to reduce the
reconstruction error. We iterate the factorization algorithm 100 times on the
training set to make the comparison with the NNSAE fair. We further set the
sparseness parameters provided by NMFSC for the weight and code matrix to
s(W)=0.9 and s(H)=0.35 according to the values obtained for the NNSAE. For
more details about NMF and NMFSC see [2, 4]. To evaluate the generalization
of NMF and NMFSC on a test set, we keep the trained filters W fixed and
update only the code matrix H iteratively as in the training.

4

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

MSE Sparseness
Test Validation Train sp(H) sp(W)

NMF 0.047±1·10−4 0.222±5·10−3 0.011±3·10−4 0.26 0.89
NMFSC 0.109±6·10−6 0.108±3·10−5 0.014±2·10−4 0.29 0.90
NNSAE 0.015±6·10−5 0.016±6·10−5 0.012±7·10−5 0.35 0.93

Tab. 2: Mean square reconstruction errors for training, validation and test set as
well as sparseness of code and weight matrices for NMF, NMFSC and NNSAE.

Fig. 2: 15 images from the test set (top row) with reconstructions (2nd row),
code histogram (3rd row) and some filters (4th row) performed by the NMFSC.
Reconstruction (5th row), code histogram (6th row) and some filters (7th row)
performed by the NNSAE.

Comparison of reconstruction errors and sparseness: Tab. 2 gives a
review of the performance of NMF/NMFSC and compares it to the NNSAE.
The NNSAE outperforms NMF/NMFSC with respect to the MSE on the test
set, sparseness of the code matrix H and sparseness of the weight matrix W. It
is surprising that even NMFSC does not reach the sparse codes that we achieve
with the NNSAE, although the constraint is set to be equal (s(H) = 0.35).
We show for some examples the corresponding code histogram of NMFSC and
NNSAE in Fig. 2. The sparseness of the filters wi does not differ significantly for
the different methods, which seems to be the effect of the non-negative constraint
itself. In Fig. 2 we show in the 4th and the last row some filters of NMFSC and
NNSAE. The filters of both methods cover only blob-like areas, i.e. are local
feature detectors, which corresponds to a sparse representation.

5

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

5 Discussion and conclusion

We present an autoencoder for efficient online learning of sparse and non-negative
encodings. Therefore, we combine a mechanism to enhance the sparseness of en-
codings and an asymmetric decay function to create non-negative weights. The
online trained autoencoder outperforms the offline techniques NMF/NMFSC
when reconstructing images from the test set, underlining its generalization ca-
pabilities. Additionally, the autoencoder produces sparser codes compared to
the offline methods while generating similar filters at the same time. Besides
the life-long learning capability, the main advantage of the new approach is the
efficient encoding of novel inputs: the state of the network has simply to be up-
dated with the new input, where the matrix factorization approaches in contrast
require a full optimization step on the new data.

It is of particular interest to use the NNSAE in a stacked autoencoder net-
work for pattern recognition in the future: Does the non-negative representation
improve classification performance, and how is fine-tuning of the hierarchy, e.g.
by backpropagation learning, affected by the asymmetric decay function? Also,
the interplay of IP and synaptic plasticity in the context of the NNSAE has to
be further investigated.

References

[1] M. Spratling. Learning Image Components for Object Recognition. Mach. Learn., 2006.

[2] D. D. Lee, and H. S. Seung. Learning the parts of objects by nonnegative matrix factor-
ization. Nature, pp. 788–791, 1999.

[3] P. O. Hoyer. Non-negative sparse coding. Neural Networks for Signal Processing XII, pp.
557-565, 2002.

[4] P. O. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of
Machine Learning Research, pp. 1457–1469, 2004.

[5] Y-lan Boureau and Y. Lecun. Sparse Feature Learning for Deep Belief Networks. NIPS,
pp. 1–8, 2007.

[6] B. Cao. Detect and Track Latent Factors with Online Nonnegative Matrix Factorization
Matrix, pp. 2689–2694, 1999.

[7] M. D. Plumbley and O. Erkki. A ”nonnegative PCA” algorithm for independent compo-
nent analysis. Neural Networks, pp. 66–76, 2004.

[8] J. Triesch. A Gradient Rule for the Plasticity of a Neuron’s Intrinsic Excitability. Neural
Computation, pp. 65–70, 2005.

[9] Variations of the MNIST database. http://www.iro.umontreal.ca/~lisa/ptwiki.

[10] G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural
Computation, pp. 1527–54, 2006.

[11] P. Vincent and H. Larochelle and Y. Bengio. Extracting and composing robust features
with denoising autoencoders ICML ’08, pp. 1096–1103, 2008.

[12] J. J. Steil. Backpropagation-Decorrelation: online recurrent learning with O(N) complex-
ity Proc. IJCNN, pp. 843-848, 2004.

[13] J. Triesch. Synergies Between Intrinsic and Synaptic Plasticity Mechanisms. Neural
Computation, pp. 885–909, 2007.

[14] Y. Lecun and C. Cortes. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist.

6

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

