
Maximal Discrepancy for Support Vector
Machines

Davide Anguita1 and Alessandro Ghio1 and Sandro Ridella1

1- University of Genova -Dept. of Biophysical and Electronic Engineering
Via Opera Pia 11A - I-16145 Genova - Italy

Abstract. Several theoretical methods have been developed in the past
years to evaluate the generalization ability of a classifier: they provide ex-
tremely useful insights on the learning phenomena, but are not as effective
in giving good generalization estimates in practice. We focus in this work
on the application of the Maximal Discrepancy method to the Support
Vector Machine for computing an upper bound of its generalization bias.

1 Introduction

A successful approach for estimating the generalization error of a learning ma-
chine relies on hold–out or cross–validation estimates, which can be obtained
by removing some of the available samples from the training set and use them
as an independent test set [1]. It is well–known, however, that this approach
has several drawbacks in the small–sample setting, where reducing the size of
training set could decrease the reliability of the learner [2].

When dealing with classification problems, several theoretical results have
been proposed to bound the generalization error using only in–sample estimates
[3, 4, 5]. Unfortunately, these bounds are too loose to be of any practical use
or their application is unfeasible. For this reason, we propose in this paper a
practical procedure to apply a rigorous in–sample method, the Maximal Discre-
pancy [5], to a very well–known learning algorithm, the Support Vector Machine
(SVM) [3, 6].

2 The Maximal Discrepancy of a Classifier

Let Dl = {(x1, y1),, (xl, yl)} be a set of i.i.d. patterns, with xi ∈ Rn and
yi ∈ Y = {−1,+1}, where the data are obtained from the unknown distribution
P (x, y). A prediction rule is a function f : Rn → Yf ⊆ R, selected from a
set F , which can be applied to Dl to compute its empirical error rate ν(f) =
1
l

∑l
i=1 L (f(xi), yi) , where L : Yf × Y → [0, 1] is a suitable loss function.

Usually, in classification tasks, we are interested in a hard loss function, which
counts the number of misclassified samples:

LH (f(xi), yi) =
{

0 if yif (xi) > 0
1 if yif (xi) ≤ 0.

(1)

Unfortunately, the use of a hard loss function makes the problem of finding
the optimal f computationally hard. Therefore, the conventional SVM algorithm

13

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

makes use of the well–known hinge loss Lξ (f(xi), yi) = [1 − yif(xi)]+ [6], which
is convex and Lipschitz continuous, so that the search for the optimal prediction
rule is greatly simplified. This simplification, however, has a severe drawback,
because the unboundness of the hinge loss complicates the problem of predicting
the generalization ability of f [5]. We propose here to use a non–convex but
Lipschitz continuous soft loss function:

LS (f(xi), yi) =
{

LH (f(xi), yi) if yif (xi) ≤ −1
Lξ (f(xi), yi) /2 if yif (xi) ≥ −1 , (2)

which can assume any value in the range [0, 1]. Differently from other proposals
[7, 8, 9], LS assigns a weight equal to 1/2 to the samples that are exactly on the
separating surface and the extreme values 0 or 1 are assigned to the patterns
that lie outside a margin |yif(xi)| ≥ 1.

In order to predict the generalization ability of a classifier, we are interested
in the generalization error of f , defined as π(f) = E(x,y) L(f(x), y), which,
unfortunately, cannot be computed since we do not know P (x, y).

It is well–known that ν(f) usually underestimates π(f): in particular, the
function f∗ = arg minf∈F ν(f), which minimizes the empirical error, is affected
by a generalization bias (π(f∗)−ν(f∗)). This bias can be studied by considering
its supremum respect to the class of functions F , supf∈F [π(f)− ν(f)], which is
a random variable that depends on the data and the set of functions F [5] and
can be analyzed through the Maximal Discrepancy (MD) method.

Let us split Dl in two halves and compute the two empirical errors:

ν(1)(f) =
2
l

l
2∑

i=1

L (f(xi), yi) , ν(2)(f) =
2
l

l∑
i= l

2+1

L (f(xi), yi) , (3)

then the Maximal Discrepancy is

MD = max
f∈F

(
ν(1)(f) − ν(2)(f)

)
. (4)

An upper bound of the generalization error in terms of MD [5] can be derived
by using the following theorem. The complete proof is omitted due to space
constraints: the proof is similar to that of Theorem 9 in [5], since the bound can
be obtained applying the McDiarmid’s inequality [10].

Theorem 1. Given a dataset Dl, consisting in l patterns xi ∈ Rn, given a class
of functions F and a loss function L(·, ·) ∈ [0, 1], the following procedure can be
replicated m times: (a) randomly shuffle the samples in Dl to obtain D

(j)
l ; (b)

compute MD(j) for each replicate. Then

π(f) ≤ ν(f) +
1
m

m∑
j=1

MD(j) + 3

√
− log

(
δ
2

)
2l

(5)

holds with probability 1 − δ.

14

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

It is interesting to note that, for any loss function L(·, ·) ∈ [0, 1] for which

L (f(xi), yi) = 1 − L (f(xi),−yi) , (6)

including the soft loss of Eq.(2), the value of MD can be computed by a con-
ventional empirical minimization procedure. Let us define a new data set,
D′

l = {(x′
1, y

′
1),, (x

′
l, y

′
l)}, such that (x′

i, y
′
i) = (xi,−yi) if i ≤ l

2 and (x′
i, y

′
i) =

(xi, yi) if i > l
2 , then it is easy to show that

MD = max
f∈F

(
ν(1)(f) − ν(2)(f)

)
= 1 − 2

(
min
f∈F

ν′(f)
)

, (7)

where ν′(f) is the empirical error obtained on D′
l.

We have to deal now with the non–convexity of LS (as with LH), since the
optimization problem for finding the minimum of the empirical error becomes
intractable and can be solved only in an approximate way [9], even for moderate
l. If a solution to this problem is not found, then the application of the previous
bound becomes unappealing in practice. We propose to use the bound of Eq.
(5) by applying a peeling technique [11], which allows to obtain an upper bound
of minf∈F ν(f) and a lower bound of minf∈F ν′(f), at the expense of a slight
increase of its looseness.

3 The Application of MD to the SVM

For the sake of simplicity, we will focus here on the linear SVM

f(x) = wT x + b (8)

because the non–linear formulation can be easily obtained through the usual
kernel trick [6]. Furthermore, we will use the following formulation, for finding
the values of the weights, which is equivalent to the conventional one [3]:

min
w,b,ξ

eT ξ (9)

‖w‖2 ≤ w2
MAX

yi

(
wT x + b

) ≥ 1 − ξi ∀i ∈ [1, . . . , l]
ξi ≥ 0 ∀i ∈ [1, . . . , l]

where ei = 1 ∀i and ξi are the slack variables introduced to obtain the hinge
loss. Even if, as in the conventional formulation, the unboundedness of the hinge
loss prevents us to apply Theorem 1, this formulation allows us to easily control
F , defined as the set of functions for which ‖w‖2 ≤ w2

MAX and b ∈ (−∞,+∞).
We define an alternative slack variable ηi = min(2, ξi), which is related to the

soft loss LS , since LS (f(xi), yi) = ηi

2 . The new slack variable can be used in the
SVM formulation in order to bound the loss function: the resulting optimization
problem is not convex, therefore we apply the peeling procedure.

15

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

3.1 The Peeling Technique

It is easy to note that the values of ηi and ξi coincide for all the patterns xi for
which yif(xi) ≥ −1: in this case LS = Lξ/2 and the loss function is bounded.

In general, however, some patterns will be characterized by yif(xi) < −1:
they are critical for computing the error, since the LS and Lξ do not coincide,
therefore we will define them Critical Support Vectors (CSVs).

Let S = {1, ..., l} be the set of indexes of the l patterns of the dataset, SC the
set of indexes of the CSVs and SN = S \ SC the set of indexes of the remaining
patterns. Then, a lower bound of minf∈F ν′(f) or, in other words, an upper
bound of MD, can be found using the following theorem (proofs are omitted due
to space constraints):

Theorem 2. Let Dl be a dataset of l patterns and let us suppose to know the
values ηi for each pattern in Dl. Then, given a class of functions F as defined
in the previous section:

min
f∈F

1
l

∑
i∈S

ηi

2
≥ min

f∈F
1
l

∑
k∈SN

ηk

2
= min

f∈F
1
l

∑
k∈SN

ξk

2
(10)

Similarly, we can upper bound the error on the training set minf∈F ν(f):

Theorem 3. Let Dl be a dataset of l patterns and let us suppose to know the
values ηi for each pattern in Dl. Then, given a class of functions F as defined
in the previous section:

min
f∈F

1
l

∑
i∈S

ηi

2
≤ |SC |

l
+ min

f∈F
1
l

∑
k∈SN

ηk

2
=

|SC |
l

+ min
f∈F

1
l

∑
k∈SN

ξk

2
, (11)

where |SC | is the cardinality of the set SC .

In order to obtain the tightest bound, we should choose the set SC with
minimum cardinality, but this approach is obviously infeasible as it would require
to examine all the possible combinations of samples. A possible solution is to
consider one sample at the time: at first, the SVM learning problem is solved
to identify the CSVs, then the CSV with the largest error or, in other words,
the sample for which yif(xi) is minimum, is deleted from the training set and
the learning is repeated with the remaining samples. At the final step, the
classifier will be trained on the set consisting of the remaining |SN | patterns.
The following Theorem provides a lower bound for |SN | and guarantees that the
peeling procedure ends with |SN | > 0:

Theorem 4. The peeling technique described above ends with |SN | ≥ dV C , where
dV C is the Vapnik–Chervonenkis dimension of the classifier [3].

The peeling procedure is obviously sub–optimal and could remove, at least
in theory, a large number of CSVs, so making the bound on generalization error
very loose. In practice, however, the number of CSVs is usually a tiny fraction

16

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

of the training set and several replicates are used in order to improve the actual
value of the MD term in the bound.

As a last remark, we show that our approach is consistent in computing MD:

Theorem 5. Let Dl be a dataset of l patterns. Let us suppose to know the soft
loss values ηi for each pattern in Dl. Then, given a class of functions F ,

1
l

min
f∈F

∑
i∈SN

ξi

2
≤ 1

2
. (12)

Therefore minf∈F ν′(f) ≤ 1/2 and MD ≥ 0.

4 Experimental Results

The MD–based method is obviously targeted toward small–sample problems,
where the use of a hold–out set for estimating the generalization ability of a
classifier is not reasonable. We propose to select a real–world dataset, consisting
of a large number of samples, and use only a small amount of the available data
as training set, so that the remaining samples can be used as a test set to obtain
a good error estimate π̂.

We select the well–known MNIST dataset [12] consisting of 62000 images,
representing the numbers from 0 to 9: in particular, we consider the 13074
patterns containing 0’s and 1’s that allow us to deal with a binary classification
problem. We build the training set by randomly sampling a small number of
patterns, varying from l = 20 to l = 300, while the remaining 13074−l images are
used as a test set. Furthermore, in order to avoid unlucky training–test splittings
and build statistically relevant results, we repeat each random sampling 30 times.
Note that the dimensionality of the dataset is 784, which is much higher than the
number of samples in each of the training sets and, therefore, defines a typical
small–sample setting.

We apply the procedure described before to find an upper bound of ν(f) and
a lower bound of ν′(f) for f ∈ F and substitute these values in Eq. (5), where
m = 30.

The results obtained using our approach, which uses a bounded loss function,
are detailed in column BL of Table 1 and are compared with an unbounded loss
approach (UL), where the error estimate is computed with LS after the learning
phase without removing the CSVs. The results are shown in Table 1, where
the term depending on δ is omitted as it is the same for all the cases. The last
column is the test set error (π̂), computed with LS , which can be used as a good
approximation of the true error. Our approach is the only one which guarantees
that the MD value is never less than zero (thank to Theorem 5), differently from
the case UL, where approximately 4% of the 30 replicates give an inconsistent
value. The bounded loss estimate (BL) is comparable with the unbounded one
(UL), but the first one is obviously to be preferred as it can be obtained with a
relatively small effort.

17

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

l BL UL π̂
20 32.5 ± 1.2 34.1 ± 1.4 13.0 ± 0.8
50 22.2 ± 0.5 22.2 ± 0.5 8.2 ± 0.5
100 17.5 ± 0.5 17.3 ± 0.6 6.1 ± 0.5
200 14.5 ± 0.3 12.9 ± 0.4 4.4 ± 0.5
300 12.9 ± 0.3 10.5 ± 0.3 4.0 ± 0.4

Table 1: Generalization error estimates with 95% confidence intervals.

5 Conclusions

We detailed a procedure that allows us to estimate the in–sample generalization
error of the SVM, which is particularly suitable for the small–sample setting.
Much work will also be necessary to understand how to tighten the MD–based
bounds; on the other hand, it is clear that data–dependent bounds are very
promising tools. Our proposal, which allows to transfer from theory to practice
the application of MD–based bounds to the SVM, is a first step toward a better
understanding of this approach.

References

[1] A. Blum, A. Kalai, and J. Langford. Beating the hold–out: Bounds for k–fold and
progressive cross–validation. In Proc. of the Conference on Learning Theory (COLT),
pages 203–208, 1999.

[2] A. Isaksson, M. Wallman, H. Goeransson, and M.G. Gustafsson. Cross–validation and
bootstrapping are unreliable in small sample classification. Pattern Recognition Letters,
29:1960–1965, 2008.

[3] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 2000.

[4] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in
learning theory. Nature, 428:419–422, 2004.

[5] P.L. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine
Learning, 48:85–113, 2002.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, 2000.

[7] L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient techniques for
combining hypotheses. In A. Smola, P.L. Bartlett, and B. Schoelkopf, editors, Advances
in Large Margin Classifiers. The MIT Press, 2000.

[8] D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino. Hyperparameter design criteria for
training support vector machines. Neurocomputing, 55:109–134, 2003.

[9] L. Wang, H. Jia, and J. Li. Training robust support vector machines with smooth ramp
loss in the primal space. Neurocomputing, 71:3020–3025, 2008.

[10] C. McDiarmid. On the method of bounded differences. In J. Siemons, editor, Surveys in
Combinatorics. Cambridge University Press, 1989.

[11] M. Fadili, M. Melkemi, and A. ElMoataz. Non–convex onion–peeling using a shape hull
algorithm. Pattern Recognition Letters, 25:1577–1585, 2004.

[12] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evalu-
ation of deep architectures on problems with many factors of variation. In Proc. of the
International Conference on Machine Learning (ICML07), pages 473–480, 2007.

18

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

